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Combination of Cepstral and Phonetically
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Abstract—Most speaker recognition systems rely on short-
term acoustic cepstral features for extracting the speaker-relevant
information from the signal. But phonetic discriminant features,
extracted by a bottle-neck multi-layer perceptron (MLP) on
longer stretches of time, can provide a complementary infor-
mation and have been adopted in speech transcription systems.
We compare the speaker verification performance using cepstral
features, discriminant features, and a concatenation of both
followed by a dimension reduction. We consider two speaker
recognition systems, one based on maximum likelihood linear
regression (MLLR) super-vectors and the other on a state-of-
the-art i-vector system with two session variability compensation
schemes. Experiments are reported on a standard configuration
of NIST SRE 2008 and 2010 databases. The results show that
the phonetically discriminative MLP features retain speaker-
specific information which is complementary to the short-term
cepstral features. The performance improvement is obtained with
both score domain and feature domain fusion and the speaker
verification equal error rate (EER) is reduced up to 50% relative,
compared to the best i-vector system using only cepstral features.

Index Terms—Speaker verification, i-vector, multi-layer per-
ceptron, bottleneck features, PCA, LDA, PLDA

I. INTRODUCTION

ACOUSTIC cepstral features, extracted from short-term
speech frames of 20-30 ms, are widely used in state-

of-the-art speaker verification systems [1]. Since a few years,
discriminative features, as extracted by a multi-layer percep-
tron (MLP), have been adopted in automatic speech recogni-
tion (ASR) systems in combination with short-term cepstral
features thanks to their relevance and effectiveness [2], [3],
[4]. The extraction of MLP feature makes use of temporal
information which spans much longer stretches of time (typ-
ically 300-500 ms), compared to the extraction of cepstral
features. MLP features used for ASR may consist of phoneme
posterior probabilities (Tandem connectionist features [5], [6])
or the linear outputs of the neurons in the bottle-neck layer
of the MLP. The latter ones, known as bottle-neck features,
have been found to be more suitable in the framework of hid-
den markov model (HMM)-gaussian mixture model (GMM)
based ASR [7]. Both probabilistic and bottle-neck features
contain a phonetic information which is derived by the MLP
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from long-term speech frames. This longer stretch of time
ensures that a significant phonetic information from speech
signal is taken into account in the calculation of each MLP
feature vector. Such features may also keep timbre-specific
information and thus be relevant for a speaker recognition
system. Alternatively, the MLP can also be trained to compute
the target speakers posterior probabilities, using either the
output layer [8] or the bottle-neck layer [9], [10] as features.
Stoll et al. compared speaker- and phonetic-discriminative
features for a speaker recognition task and got slightly better
performance with the phonetic-based features [11]; however,
simply concatenating MLP and cepstral features did not help
in improving the speaker recognition performance. In a pre-
vious work [12], we also observed that augmented features,
consisting of phonetically discriminative MLP and cepstral
features, do not outperform the cepstral features. We have thus
proposed to reduce the dimension of the augmented features,
using principal component analysis (PCA), which helps in
improving the speaker verification performance compared to
the performance obtained with cepstral features [12]. However,
these results were obtained with a baseline GMM-universal
background model (UBM) system [13] and they need to be
confirmed in a more performing framework.

In this paper, we study the effectiveness of combining
cepstral features with phonetically discriminative features in
a state-of-the-art speaker verification system with session
variability compensation technique and we investigate lin-
ear discriminant analysis (LDA) on augmented features to
discriminate the speakers. We consider two speaker verifi-
cation systems, one is based on the state-of-the-art i-vector
approach [14] and the other on maximum likelihood linear
regression (MLLR) super-vectors [29], [15]. For session vari-
ability compensation, we explore two recently developed tech-
niques namely eigen factor radial (EFR) [16] and probabilistic
LDA (PLDA) [17]. We show that augmented features improve
the speaker verification performance in contrast to several
previous studies [11], [12]. The system performances are
demonstrated on a standard task of NIST speaker recognition
evaluation (SRE) 2008 and 2010 core condition.

II. FEATURE EXTRACTION

A. Cepstral features

Cepstral feature are estimated on the telephone bandwidth
(0-4kHz) every 10ms, using a 30 ms analysis window. For
each frame the cubic root of the Mel scale power spectrum is
computed, followed by an inverse Fourier transform, and 12
LPC-based cepstral coefficients are extracted, using a process
similar to that of perceptual linear predictive (PLP) coefficients
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[18]. Cepstral mean removal and variance normalization are
carried on independently for each speaker utterances. The 39-
dimensional acoustic feature vector consists of 12 cepstral
coefficients and the log energy, along with the first and
second derivative coefficients computed over a window of
5 and 7 frames, respectively. Speech fundamental frequency
F0, which reflects the vocal fold vibration rate, can also be
useful for speaker verification and complement the spectral
envelope [19], [20], [21]. In this respect, a 3-dimensional pitch
feature vector (pitch, ∆ and ∆∆ pitch) is extracted, using the
autocorrelation method [22] coupled with linear interpolation
in order to avoid zero values in the unvoiced segments. The
pitch feature vector is added to the original PLP features,
resulting in a 42-dimensional cepstral feature vector (PLP+F0).
These features are used as the baseline cepstral features and,
henceforth, will be abbreviated as PLP.

B. Discriminative features

The MLP features are generated in two steps. The first step
is raw features extraction which constitutes the input layer
to the MLP neural network. In this work, the TRAP-DCT
(TempoRAl Pattern -Discrete Cosine Transform) [7] is used as
raw features. The TRAP-DCT features are obtained from a 19-
band Mel scale spectrogram, using a 30 ms window and a 10
ms offset, similar to [23] on broadcast data. A discrete cosine
transform (DCT) is applied to 500 ms window of each band
from which 25 first DCT coefficients are retained. The retained
DCT coefficients are then concatenated together. In total, the
raw features have, thus, 19× 25 = 475 DCT coefficients. The
raw features are then input to a 4-layer MLP [3] with the
bottle-neck architecture [7]. The size of the third layer (the
bottle-neck) is equal to the desired number of features (39).

In a second step, the raw features are processed by the MLP
and the features are not taken from the output layer of the
MLP but from the hidden bottle-neck layer and de-correlated
by a PCA whitening transformation. No speaker normalization
and adaptation technique was applied on the raw features
like VTLN or SAT/CMLLR [24] or on the MLP features
like HLDA, phonetic MLLR adaptation [25], [24]. These
normalization techniques may improve the ASR performance
but remove a more speaker specific information. The MLP
feature vector has finally 39 dimensions. An illustration of
MLP (bottle-neck) feature extraction is shown in Fig. 1.

Fig. 1. MLP (bottle-neck) features extraction using a 4-layer MLP neural
network. The input features are TRAP-DCT, extracted from 500 ms windows
in the sub-bands of short-term spectrogram [3], [7]. PCA is applied to de-
correlate the 39-dimensional feature vector taken from the bottle-neck layer.

The MLP neural network is trained using ICSI Quicknet
software [26] on about 2000 hours of conversational telephone
speech (CTS) data, mainly from the Switchboard, CallHome

or Fisher databases provided by the LDC [27]. The phonetic
segmentation was obtained through forced alignment. Since
the amount of data for training the MLP is very large, efficient
training procedure should be implemented. In our work, a
simplified training scheme, proposed in [6], was applied for
the training. Following this scheme, the conversation sides are
randomized and split in three non-overlapping subsets, used
in 6 training epochs with fixed learning rates. The first three
epochs use only 13% of data, the next two use 26%, the last
epoch uses 52% of the data, with the remainder used for
cross-validation to monitor the performance. The MLP has
138 targets, corresponding to the individual states for each
phone and one state for the additional pseudo phones (silence,
breath, filler-word).

C. Feature Dimension Reduction

Two techniques are considered for reducing the dimension
of the augmented features resulting from the concatenation of
MLP (39 dimension) and PLP (42 dimension), namely princi-
pal component analysis (PCA) and linear discriminant analysis
(LDA) [28]. With PCA, the projection space is generated
through eigen value decomposition of the covariance matrix
estimated using augmented features pooled over many non-
target speakers. With LDA, the transformation matrix aims to
maximize the ratio of between-class scatter SB and within-
class scatter SW .

III. SPEAKER VERIFICATION SYSTEMS

We consider two approaches to evaluate the speaker verifi-
cation performance of the proposed features; one is based on
maximum likelihood linear regression (MLLR) super-vectors
and the other relies on the standard i-vector approach.

A. MLLR super-vector

In the MLLR super-vector system [15], [29], speakers or ut-
terances are represented by a super-vector formed by row-wise
stacking the element of the respective speaker or utterance
MLLR transformation [30]. The MLLR transformation for a
speaker is estimated with respect to a universal background
model (UBM) in the maximum likelihood (ML) sense using
his/her training data, without any speech transcription, as

µ̂k = Aµk + b, Σ̂k = Σk (1)

where µk and Σk represent the mean and co-variance matrix of
the kth Gaussian of the UBM model and µ̂k and Σ̂k are the
adapted model parameters. The same MLLR transformation
(A, b) is shared by all Gaussians. Then, the MLLR transfor-
mation matrix A of the particular speaker is stacked row wise
to form the representative MLLR super-vector. The bias b did
not provide measurable gains in our experiments and is not
further considered. It results in a F × F dimensional super-
vector depending on the dimension F of the feature vectors.
B. i-vector

The i-vector system characterizes speakers and utterances
with vectors obtained by projecting their speech data onto a
total variability space T where speaker and channel informa-
tion is dense [14]. It is generally expressed as:

S = m+ Tw (2)
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where w is called an i-vector and m and S are the GMM
super-vector of the speaker independent UBM and speaker
adapted model, respectively. It was implemented using the Bob
toolkit [31], [32].

IV. SESSION VARIABLITY COMPENSATION & SCORING

During the test phase, the i-vector or the MLLR super-vector
of the test utterance is scored against the claimant speaker
specific vector obtained in the training phase, after a post-
processing of the vectors for session variability compensation.
We consider two techniques most commonly used in the i-
vector framework.

1) Eigen Factor Radial (EFR): The i-vector w is iteratively
length normalized to compensate the session variability as
per [16]. During test, the score between the length normalized
i-vector of claimant ŵcl and test utterance ŵtst is calculated
through a Mahalanobis distance normalized with the within-
class covariance matrix computed using data pooled from
many non-target speakers. In the case of MLLR based system,
high-dimensional MLLR super-vectors are first projected onto
a LDA space in order to reduce the dimension and better
discriminate the speakers. Afterward, LDA projected MLLR
super-vectors are length normalized and scored similarly to
the i-vectors.

2) Probabilistic LDA (PLDA): PLDA is a generative mod-
eling technique which decomposes the i-vector into several
components as:

w = µw + Φys + Γz + ε (3)

where Φ and Γ are rectangular matrices representing the eigen
voice and eigen channel subspace respectively. ys and z are
called the speaker and channel factor, respectively, with a
priori normal distribution. ε indicates the residual noise. In
test phase, the score between the i-vector of claimant wcl and
test utterance wtst is calculated as:

score(wcl, wtst) = log
p(wcl, wtst|θtar)

p(wcl, wtst|θnon)
(4)

with hypothesis θtar that wcl and wtst are from the same
speaker and hypothesis θnon that they are from different speak-
ers. For details see [17]. MLLR super-vectors are processed
similarly than i-vectors without any prior LDA.

V. EXPERIMENTAL SETUP

Experiments are preformed on male speakers of two stan-
dard tasks of NIST SRE 2008 (task 7, tel-tel) and 2010 (task
5, tel-tel) as per NIST evaluation plans [33], [34]. There are
1270 and 5200 utterances, respectively for NIST 2008 and
2010 for training 1270 and 5200 target models. All utterances
are 5 minutes long with around 2.5 minutes speech duration.
For the experiments on NIST SRE 2008, the total variability
space T is trained using 12399 non-target speech utterances
collected from various database (NIST 2004-05, Switchboard
II part 1, 2 & 3; Switchboard cellular part 1 & 2, about 15
sessions per speaker; 890 speakers). This dataset is also used
for implementing PCA, LDA, EFR and PLDA in both MLLR
super-vector and i-vector systems. The reference speaker label
is used for training the LDA and PLDA projections. In the

case of PCA and LDA in augmented feature domain (i.e.
concatenation of MLP and PLP), the file-wise mean vector
is considered. For PLDA, both speaker and channel factors
are varied to find the best speaker verification performance
(with a step of 50 upto the dimension of the vector). MLLR
adaptation is performed using a single iteration. For SRE
2010 experiments, 6947 additional utterances are taken from
SRE 2006 and 2008 for training the T space, EFR and
PLDA. However, the LDA or PCA projection matrices used
are the ones estimated on SRE 2008 development set. The
dimension of the i-vector is 400 for both SRE 2008 and 2010
systems. The UBM consisting of 512 Gaussians with diagonal
covariance matrices is trained using non-target data from NIST
SRE 2004. In the case of MLP+PLP augmented features
followed by LDA or PCA, a dedicated i-vector or MLLR
system is implemented on the projected features. However,
UBM size, UBM training data, i-vector dimension, number
of iterations for total variability space, PLDA training and
procedure were fixed on SRE 2008 development set and kept
identical for the experiments on SRE 2010 test set. The system
performance is measured using the equal error rate (EER).

VI. RESULTS AND DISCUSSION

For analysis, speaker verification system performances are
presented with EFR and PLDA session variability technique
on task 7 (tel-tel) of NIST SRE 2008 core condition. The
best system is selected according to the lowest EER. Then,
system performances for the best configuration are given on
SRE 2010.

A. Performance on SRE 2008 development set

In this section, we compare the performance of a speaker
verification system with or without augmented feature on task
7 of NIST SRE 2008 core condition. The optimal PCA or
LDA projection size is selected based on the lowest EER for
different values of projection as shown in Fig. 2 based on the
respective system with EFR.

From Table I, it can be observed that a system using a simple
concatenation of the MLP+PLP features without any further
projection fails to improve upon the baseline MLLR system.

TABLE I
Comparison of speaker verification performance with or without PCA/LDA
on augmented feature system with the baseline systems on task 7 of NIST

SRE 2008 core condition for different configurations.

System Features/dim. Opt. %EER
proj. EFR PLDA

MLLR systems
Baseline MLP/39 - 5.08 3.97
systems PLP/42 - 4.23 4.43
Augmented MLP+PLP/81 - 7.01 6.02
features MLP+PLP/81 PCA40 3.44 2.65

MLP+PLP/81 LDA45 3.39 3.20
Score fusion MLP/39 & PLP/42 3.59 2.92

i-vector systems
Baseline MLP/39 - 3.41 2.61
systems PLP/42 - 2.51 2.05
Augmented MLP+PLP/81 - 2.01 1.80
features MLP+PLP/81 PCA70 1.85 1.58

MLP+PLP/81 LDA70 1.84 1.63
Score fusion MLP/39 & PLP/42 2.48 1.61
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Fig. 2. Speaker verification performance of MLLR super-vector and i-vector
systems with EFR for different PCA/LDA projected dimension of augmented
features (MLP+PLP) on task 7 (tel-tel) of NIST SRE 2008 core condition.

Conversely, when projected either with PCA or LDA, the
system using augmented features shows a remarkably lower
EER compared to the best system with standalone features for
both MLLR and i-vector systems with the different session
variability and scoring techniques, a relative improvement
above 20% for the MLLR systems and i-vector systems.
The late fusion of standalone MLP and PLP feature based
systems in the score domain also provides a comparable
reduction of the EER. Thus, both MLP and PLP contain
complementary speaker related information when integrated
into a speaker verification system using a current session
variability compensation technique in contrast to [11], [12].
The i-vector system yields a better performance than the
MLLR based system for both EFR and PLDA. In the case of
EFR, augmented features projected with LDA show a slightly
better performance than with PCA. Conversely, for PLDA, a
slightly better performance is observed with PCA, which could
be due to a complementarity between PCA and PLDA.

B. Performance on NIST 2010 SRE

In this section, we further present the speaker verification
performance on task 5 of NIST SRE 2010 core condition for
the i-vector system only, using the PLDA parameters which
where found optimal on NIST SRE 2008.

From Table II, we can observe a similar pattern than on
NIST SRE 2008. The combination of MLP with PLP features
result in a remarkable improvement of the speaker verification
performance compared to the systems which uses standalone
features for EFR or PLDA session variability compensation
schemes. Departing from the observation on the development
set, LDA only slightly improves the result compared to the
raw concatenated features, while PCA actually degrades the
performances. When using EFR scoring, feature fusion results
in a better system than score fusion. Compared to the best

TABLE II
Seaker verification performance on task 5 of NIST SRE 2010 core condition

with i-vector for different session variability and scoring techniques.

System Features/dim. Opt. %EER
proj. EFR PLDA

Baseline MLP/39 - 2.33 2.01
systems PLP/42 - 2.55 2.25
Augmented MLP+PLP/81 - 1.48 1.15
features MLP+PLP/81 PCA70 1.69 1.42

MLP+PLP/81 LDA70 1.40 1.13
Score fusion MLP/39 & PLP/42 1.97 1.12
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Fig. 3. DET curves corresponding to the PLDA systems presented in Table II.

performing cepstral-based i-vector system with PLDA scoring
at 2.25% EER, the concatenation with MLP features followed
by a LDA projection results in a 50% relative improvement,
at 1.13% EER, and score fusion behaves similarly, halving the
EER to 1.12%. More generally, the detection error trade-off
(DET) curves presented on Fig. 3 for the PLDA scoring case
show that the LDA projection provides the best performance
for a large range of operating points.

VII. CONCLUSION

Recently, phonetically discriminative features extracted
from long-term temporal windows with a bottle-neck MLP
were found to be complementary to the cepstral features for
ASR systems. In this work, we explored the combination of
PLP cepstral features and MLP features in the context of
speaker verification on two standard tasks of NIST SRE 2008
and 2010 core condition. We observed that a system using
concatenated features remarkably outperforms the standalone
systems, in a state-of-the-art i-vector framework with EFR
or PLDA session variability compensation and scoring. It
generally helps to project the augmented features onto a
lower-dimensional space using PCA or LDA, however the
gains obtained with PCA on the development set were not
observed on the test set. Using LDA-projected concatenated
features, the speaker verification equal error rate was reduced
by about 50% relative compared to the best cepstral i-vector
system on SRE 2010. Late fusion in score domain of the
MLP and PLP systems also provided a similar improvement
compared to the corresponding standalone systems, and even
slightly outperformed the feature-domain fusion in the best
configuration of i-vector systems with PLDA scoring.

These results confirm, as was observed in previous study
[12], that the phonetically discriminative MLP features retain
speaker-specific information which is complementary to the
short-term cepstral features. Furthermore, their combination
is effective both in score and feature domain and provides
an important gain in the context of a state-of-the-art speaker
verification system.
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