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Abstract

This paper presents first results in using active learning
(AL) for training data selection in the context of the IARPA-
Babel program. Given an initial training data set, we aim to au-
tomatically select additional data (from an untranscribed pool
data set) for manual transcription. Initial and selected data are
then used to build acoustic and language models for speech
recognition. The goal of the AL task is to outperform a baseline
system built using a pre-defined data selection with the same
amount of data, the Very Limited Language Pack (VLLP) con-
dition. AL methods based on different selection criteria have
been explored. Compared to the VLLP baseline, improvements
are obtained in terms of Word Error Rate and Actual Term
Weighted Values for the Lithuanian language. A description
of methods and an analysis of the results are given. The AL
selection also outperforms the VLLP baseline for other IARPA-
Babel languages, and will be further tested in the upcoming
NIST OpenKWS 2015 evaluation.

Index Terms: active learning, low-resourced STT, KWS.

1. Introduction

This paper describes our recent research in using active learning
to select a set of training data in the context of the JARPA-Babel
program [8]. The program aims at developing speech-to-text
(STT) and keyword spotting (KWS) systems for low-resourced
languages. In the context of this work, low-resourced languages
are those with a low presence on the Internet, and more gen-
erally, limited textual resources especially in electronic form.
There is in general little knowledge about the language, with
very little or essentially no available audio data and small pro-
nunciation dictionaries (if available). Over the last years there
has been growing interest in developing technologies for low-
resourced languages as illustrated by the growing popularity of
the SLTU workshop series' as well as special sessions in major
conferences. Some of the approaches range from bootstrapping
with models from well-resourced languages to complete self-
discovery of linguistic units for unwritten languages (see for
example [1, 3, 12, 21, 23, 22]).

The IARPA-Babel program [8] aims to support rapid devel-
opment of speech technologies for effective keyword search in
a variety of languages selected to present challenges at differ-
ent levels (written scripts & writing conventions, phonological,
morphological, dialectal). For each targeted language the pro-
gram provides a build pack, which contains transcribed speech
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data, a pronunciation dictionary and a brief descriptive “Lan-
guage Specific Peculiarities” document [19]. The techniques
developed in the program on what are referred to as develop-
ment languages are also applied to a surprise language as part
of the NIST Open Keyword Search Evaluation (OpenKWS13,
OpenKWS 14, OpenKWS15) [20].

Since the project start, the resources provided within the
program for each language have been reduced annually in or-
der to promote the development of techniques which are less
dependent on such resources, as their collection and annotation
are both time-consuming and costly. A new research direction
under exploration is to use an initial STT system trained on a
very small amount of transcribed audio data (only one hour) to
select additional data to be transcribed. This is defined as the
Active Learning (AL) task within the IARPA-Babel program.
The basic idea is similar to the techniques used for the unsu-
pervised, semi or lightly supervised acoustic modeling tech-
niques explored over the last decade [11, 14, 15, 25]. However
instead of applying the techniques to create approximate tran-
scripts which are directly used for acoustic model training, here
the automatic transcripts are used to select a subset of data from
a pool of data for which true transcripts will be created.

A variety of criteria were considered for data selection
based on knowledge of speech models and experience in train-
ing them as described in Section 3. Systems built with the
AL based selected data are compared to a baseline system
built on a pre-defined data set, called the Very Limited Lan-
guage Pack (VLLP) condition. Comparisons are performed in
terms of word error rate (WER) and actual term weighted value
(ATWYV). The next section describes the available corpora and
methodology. The AL data selection problem is formalized in
Section 3. Experimental results and analyses are presented in
Section 4 followed by a brief conclusion.

2. Data and methodology

The STT systems were trained on data provided within IARPA-
funded Babel program [8]. In this program phase (OP2) systems
are being developed for 6 languages: Cebuano, Kazakh, Kur-
dish, Lithuanian (IARPA-babel304b-v1.0b), Telugu and Tok-
Pisin. As a total about 50 hours of transcribed conversational
telephone speech are provided for each language. This data is
divided into different subsets which are illustrated in Figure 1.

2.1. The Active Learning task

The AL task in the TARPA-Babel program can be described
as follows. A pre-defined 1-hour training set is used to build
a bootstrap system. This system is used to decode an untran-

September 6 — 10, 2015, Dresden, Germany



scribed 29-hour pool data set. Based on the decoding hypothe-
ses and a selection criterion, 2 hours of data are selected from
the data pool for manual transcription (transcription recovery).
An AL-based STT system is then built using the available 3
hours (initial 1h + selected 2h) of data. The recovered tran-
scriptions cannot be used to perform further iterations of data
selection.

In the context of these experiments, the data pool from
which the selection is made is already transcribed. So the above
procedure simulated by recovering the transcripts from the com-
plete word time-coded corpus. The results reported in this pa-
per were obtained using an internal transcription recovery algo-
rithm. For the OpenKWS15 Evaluation, the transcripts will be
provided by NIST. During the development phase, similar re-
sults were obtained using our internal recovery algorithm and
the transcripts returned by NIST.

2.2. The VLLP baseline condition

Systems built with the AL based data selection were com-
pared to systems built with the VLLP data set. It consists of a
pre-defined 3-hour set selected in order to have about the same
duration of speech for each speaker represented in a pool of 30
hours of data (see Figure 1). The number of speakers varies
from 364 to 399 for the OP2 languages. The VLLP data set
includes the 1-hour data set used to bootstrap the AL systems.

2.3. VLLP and AL based system development

For the VLLP and AL tasks, only 3 hours of data are con-
sidered to be transcribed. The remainder of the pool data set (27
hours) and additional roughly 40 to 50 hours of untranscribed
data for each language were available and could be used for
semi-supervised training [11, 25]. For both conditions, the data
available from the Year-1 and Year-2 IARPA-Babel program
(11 languages) could be used to develop multilingual models.

In addition to the manual transcriptions associated to the 3-
hour training data, a textual corpus was available. It consists
of texts collected from the Web (Wikipedia, subtitles and other
webtexts). This webdata was filtered, normalized and provided
to the Babelon team by BBN. The size of the webdata varies
between languages from 5.7M to 49M words. For Lithuanian
(IARPA-babel304b-v1.0b), about 26M words were available.

Two data sets were used to assess the models. The tun-
ing set, containing 3 hours of speech, was used to optimize the
system parameters. The development set, containing about 10
hours of speech, was used to evaluate the systems in terms of
speech recognition and keyword spotting (see Figure 1).

2.4. Baseline recognition systems

The baseline STT and KWS systems are described in [9].
For rapid development, all STT systems are based on graphemic
pronunciation units and are built via flat start. The acous-
tic models (AM) are left-to-right 3-state HMMs with Gaus-
sian mixture observation densities, triphone-based and word
position-dependent [4]. The models contain about 2k tied-states
and 20k mixtures. The models are built using discriminative
features produced with a stacked bottle-neck multilayer percep-
tron and provided to the Babelon team by BUT [7].

Language models (LM) are n-gram based and are trained
with the LIMSI STK toolkit. Component models are estimated
on the manual transcriptions associated to the acoustic training
data and the webtexts. These models are interpolated with co-
efficients optimized on the TUN data set. Decoding is carried
out in a single-pass. A word lattice is generated a 3-gram LM,
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Figure 1: Available data for system training and evaluation in
the IARPA-Babel period OP2.

then a consensus decoding is performed to generate the final
hypotheses.
2.5. Keyword search method

The keyword search method used in this work is described
in [9]. First, a word and a sub-word consensus network (CN) are
generated from decoding lattices [17]. Both CNs are searched
to locate all sequences of words and sub-words that correspond
to each keyword. Word boundaries are ignored during search.

Keyword hits from both CNs are combined based on time-
codes. The keyword scores are then normalized and calibrated
using the BBN KST normalization tool [10]. Decision about
keeping or ignoring keyword hits is based on a defined thresh-
old. In this work, sub-word units have up to 7 letters (7-grams).

2.6. Performance metrics

Speech recognition system performance is measured using
the well-known word error rate (WER) metric. The KWS per-
formance is reported here in terms of the Actual Term-Weighted
Value (ATWV) [2, 20]. The keyword specific ATWV for the
keyword k at a specific threshold ¢ is computed as:

ATWV (k,t) =1 — Prr(k,t) — BPra(k,t) 1)

where Prr and Pr 4 are respectively the probability of a false
reject (miss) and false accept. The constant 5 mediates the trade
off between false accepts and false rejects and is set to 999.9 for
the OpenKWS Evaluation.

3. Active Learning

Active Learning based data selection is a research area that
has been recently explored for speech and language process-
ing technologies [13, 16, 18, 24]. Kirchhoff et al.[13] identi-
fies at least four applications for which AL could be used: to
speed-up system development, for system adaption, for annota-
tion and for system evaluation. The common objective of these
applications is to use data selection to meet certain requirements
in terms of development time or budget. The selected data set
should furthermore contain as much as possible of the informa-
tion available in the full data set.

Data selection can be formalized as follows. Given a pool
data set P, the aim is to select a subset S of P with size |S| <=
| P|, that maximizes a suitable objective function f(-):

S* = argmax{f(S):|S| =k, S € P} 2)

The scenario defined for the OpenKWS15 is for data an-
notation. The data set sizes are defined in terms of duration of
speech in hours and correspond to k = 2 and |P| = 29.

In this work, the selection units are speech segments ob-
tained by a Voice Activity Detection (VAD) system. Different
monolingual and multilingual VADs were evaluated in order to
process the pool data [5]. For the data selection task, the best
STT performances were obtained using a VAD based on the
time-domain correlation function [6] and trained on multilin-
gual data. It was used in all AL experiments reported here.
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Figure 2: WER vs. training likelihood, vocabulary size of hypotheses and HMM-state entropy for 27 AL-based systems.

[ Measure | WER | Voc. hyp. | Letter hyp. [ LLH train [ Conf. | Entropy |
WER 1.00 -0.94 -0.84 0.82 0.40 -0.94
Voc. hyp. - 1.00 0.70 -0.81 -0.37 0.95
Letter hyp. - - 1.00 -0.74 -0.12 0.73
LLH train - - - 1.00 0.08 -0.88
Conf. - - - - 1.00 -0.26
Entropy - - - - - 1.00

Table 1: Pearson correlation matrix between WER, size of hypothesized vocabulary (Voc. hyp.), number of letters in hypotheses
(Letter hyp.), log-likelihood of training data (LLH train), decoding confidence score (Conf.) and HMM-state entropy (Entropy).

3.1. HMM-state entropy criterion
The main selection criterion proposed in this work is the
HMM-state entropy, which can be defined as:
N
H=—

i=1

N
G logz%, with C = Zci 3)
1=1
assuming that there exists /N acoustic states representing the
speech distribution, and where ¢; correspond to the number of
training vectors associated to the state ¢ € [1, N]. A greedy
algorithm was used to solve Equation 3. At each iteration, the
utterance giving the highest increase in entropy is selected until
the target amount of data is obtained.

Entropy based data selection was already explored in [24].
Authors used entropy based on the distribution of phonemes to
uniformly select a subset of a transcribed corpus. Here, this
approach is extended to the distribution of acoustic model states
and for data selection in an untranscribed corpus. Intuitively,
model states would provide a more general representation of
the acoustic space compared to phonemes. In this work, the
state labels are obtained from the decoding of the untranscribed
corpus using the bootstrap system.

3.2. Other selection criteria

Besides entropy, a variety of other selection criteria were
assessed. They have been defined in order to cover different
aspects related to acoustics, lexical or pronunciation units and
decoding metrics. Selection was performed based on: the sig-
nal duration of the segment, the speech density, the utterance
data likelihood (normalized by duration or unnormalized), the
decoding confidence scores, the number of letters, the number
of words and the letter density w.r.t. the signal or the speech
duration. For most of these metrics, selection was performed
based on the minimum and maximum values (e.g. shortest and
longest signal duration).
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4. Experimental results

4.1. Correlation analysis

WER and ATWYV are the measures of interest for the tasks
STT and KWS tasks respectively. Unfortunately, these metrics
cannot be used as objective functions for data selection, since
the true transcriptions are unknown. A first set of experiments
was carried out on Lithuanian aiming to determine which met-
rics are better correlated with the WER. It was assumed that the
WER and ATWYV have a strong correlation.

The criteria specified in the previous section were used to
build 27 AL-based AMs. The LMs were estimated only on the
recovered transcriptions. Various measures were used to ana-
lyze the selection and recovered transcriptions. These include
the number of words or letters (distinct, total) in the hypotheses
and in the recovered references, the training and TUN data like-
lihood, the HMM state entropy, the decoding confidence scores,
the LM perplexity on TUN and the out-of-vocabulary rate.

The curves plotted in Figure 2 show the relation between
the TUN WER and likelihood of the selected data, the size of
the vocabulary in the decoding hypotheses and the HMM-state
entropy for the 27 AL-based systems. Selecting data of low
likelihood conducts to better WER results than selecting data of
high likelihood. This can be explained by the fact the informa-
tion provided by the high likelihood data is already present in
the initial system, while the manual annotations of data with low
likelihood provide more information. The HMM-state entropy
and the vocabulary size are correlated with the TUN WER. To
reduce the WER, it is necessary to select data with high entropy
and a large variety of words. It was observed that the vocabulary
size of the hypotheses is strongly correlated with the vocabulary
size of the recovered transcripts.

To have an overview of how the various measures are asso-
ciated, a Pearson correlation matrix was calculated. This matrix



LM used for LM used for TUN decoding

AL pool decoding | train(3h) | +web(40k) | +web(100k)
train(3h) 63.9 59.8 59.1
+web(40k) 63.8 59.6 58.8
+web(100k) 64.1 59.7 58.9

Table 2: TUN WER(%) with three LMs: one trained on manual
transcripts and two with additional webdata (40k and 100k word
lists). HMM-state entropy based selection.

Selection criterion voc. size | trn(3h) | +web(40k)
AL bootstrap (1h) 2.5k 70.0 64.3
VLLP baseline 5.7k 65.6 61.1
Signal duration (max) 5.7k 66.5 61.4
Signal duration (min) 5.4k 65.8 61.2
Confidence score (max) 4.2k 67.1 61.6
Confidence score (min) 6.6k 64.8 60.8
Log-likelihood (max) 5.1k 68.5 64.6
Log-likelihood (min) 6.5k 64.8 60.5
Letter density (max) 6.9k 63.9 59.6
HMM-state entropy 6.4k 63.9 59.6

Table 3: TUN WER(%) with LM trained manual transcripts and
with additional webdata (40k word list). Voc. size: reference
transcription vocabulary.

is partially shown in Table 1. Larger numbers in magnitude
means stronger correlation. The two measures that correlates
at best with the WER are the number of distinct words in the
hypotheses (Voc. hyp.) and the Entropy. The likelihood of the
data and the number of letters (Letter hyp.) also correlates well
with the WER. No significant correlation was observed between
the confidence scores and the obtained WER. This is possibly
due to the low accuracy obtained with the initial system.

4.2. Impact of webdata on data selection

The experiments described in the previous section were per-
formed using the available 3h data set for acoustic and language
modeling. Results suggest that the best criteria tended to maxi-
mize the number of distinct words in the selected data. We as-
sessed the impact of adding webdata to the LM used to decode
the AL data pool (prior to selection). The underlying premise
is that web-based LMs would improve the accuracy of hypothe-
sized transcripts of the pool, thereby helping the data selection.
The webdata LM was also used to decode the TUN data.

Web-based LMs were estimated using a 40k and a 100k
word list. Table 2 shows the WER obtained with Lithuanian
STT systems built using the HMM-state entropy selection. Sim-
ilar results were obtained with the letter density criterion. Using
webdata leads to significant WER reductions on the TUN data.
An absolute gain of 4.8% (63.9% vs. 59.1%) is obtained with
the 100k-word LM. However, webdata has little impact on data
selection based on the AL pool decoding. The largest WER
absolute gain obtained was 0.3% (59.1% vs. 58.8%).

4.3. STT and KWS results

Table 3 summarizes the data selection STT experiments
performed for Lithuanian. For each selection criterion, the TUN
WER obtained with a LM trained only on the transcriptions and
with the additional webdata is reported. The vocabulary size of
the recovered transcriptions (reference) is also given. The re-
sults obtained with the AL bootstrap system and with the VLLP
baseline are reported for comparison.

Systems built using the data selection criteria leading to the
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Condition WER | ATWYV (all/IV/OOV)
VLLP baseline 594 | 0.357/0.382/0.221
AL, log-likelihood (min) | 58.9 | 0.387/0.407 /0.268
AL, letter density (max) 58.8 | 0.385/0.407/0.250
AL, HMM-state entropy | 58.4 | 0.383/0.403/0.272

Table 4: WER and ATWYV results on the Lithuanian DEV data.

best STT results on the TUN data were used to decode the DEV
data (used here as an evaluation set). KWS was performed
on the word/sub-word based consensus networks as described
in [9]. Table 4 presents the WER and ATWYV results obtained.
The ATWYV results reported are those obtained after combining
word and sub-word keyword hits. ‘IV’ and ‘OOV’ refer re-
spectively to the scores obtained on the in-vocabulary and out-
of-vocabulary decoding words. Here, a keyword is considered
OOV if it contains at least one OOV word.

On the DEV data, the reported AL-based systems outper-
form the VLLP baseline in terms of WER (1% absolute) and
ATWV (3% absolute). The best system for STT is not the
best for KWS. While the lowest WER is obtained with the en-
tropy criterion (58.4%), the highest ATWYV is obtained with the
minimum likelihood criterion (0.387). However, we note that
ATWYV differences among the AL-based systems reported in
Table 4 is small (between 0.383 and 0.387).

S. Summary

We explored Active Learning methods using a variety of cri-
teria to select data for manual transcription and STT training.
We first analyzed the correlation between various measures to
identify the best selection criteria for Lithuanian. It was ob-
served that the HMM-state entropy and the vocabulary size are
strongly correlated with the WER. The HMM-state entropy and
the letter density criteria, the two recovering the largest vocab-
ularies, led to the best WER, outperforming the baseline VLLP
by about 1-1.7% absolute. The best AL-based systems also im-
proved over the baseline ATWYV by about 3% absolute.

The data pool from which the selection is taken was already
transcribed, so the transcripts are simply recovered from the
time-aligned corpus. In real conditions, it might be useful to
add constraints on the minimum and maximum segment dura-
tion to facilitate the production of manual transcripts.

Similar results have since been obtained for the other
IARPA-Babel OP2 languages. Preliminary results indicate
that combining selection criteria can improve over the re-
sults reported here. These techniques will be applied to the
OpenKWS15 Evaluation surprise language.
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