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3 Université Paris-Sud, Orsay, France
bredin@limsi.fr – http://herve.niderb.fr/

Abstract
We address the problem of named speaker identification in TV
broadcast which consists in answering the question “who speaks
when?” with the real identity of speakers, using person names
automatically obtained from speech transcripts. While exist-
ing approaches rely on a first speaker diarization step followed
by a local name propagation step to speaker clusters, we pro-
pose a unified framework called person instance graph where
both steps are jointly modeled as a global optimization problem,
then solved using integer linear programming. Moreover, when
available, acoustic speaker models can be added seamlessly to
the graph structure for joint named and acoustic speaker identi-
fication – leading to a 10% error decrease (from 45% down to
35%) over a state-of-the-art i-vector speaker identification sys-
tem on the REPERE TV broadcast corpus.

1. Introduction
Named speaker identification is the task aiming at answering the
question “who speaks when?” in an audio document using the
sole knowledge of person names pronounced in this audio doc-
ument. As such, it can be seen as a fully unsupervised speaker
identification problem, where prior acoustic speaker models are
not available.

It was first proposed in 2004 by Canseco et al. [1]. Names
were manually classified based on their lexical context to in-
dicate whether they refer to the speaker themselves, the ad-
dressee or someone else. Tranter et al. extended this approach
in 2006 via automatic learning of these patterns from n-gram
sequences centered on person names [2]. However, though they
used automatic speech transcription, person name detection was
still done manually. Also in 2006, Mauclair et al. used an-
other approach based on semantic classification trees (SCT) to
match names with speaker turns [3]. Estève et al. compared the
two approaches in the same experimental conditions and con-
cluded that, while Tranter’s approach performs best on manual
transcription, Mauclair’s SCTs give significantly better results
when applied on automatic transcription [4]. Finally, Jousse et
al. further developed the SCT approach, and performed a de-
tailed analysis of the influence of transcription or diarization er-
rors on the overall speaker identification performance [5]. For
instance, they report that identification error rates increase from
17% up to 75% when switching from manual to fully automatic
name detection.

All existing approaches [1, 2, 3, 5] have in common that
they rely on a preliminary and potentially erroneous speaker di-
arization step (where speech turns of the same speaker are auto-
matically tagged with the same anonymous label) followed by

a local name propagation step.

In contrast, in this paper, we adapt our previous work ad-
dressing unsupervised audiovisual speaker identification (us-
ing names written in overlaid text on TV) [6] to audio-only
named speaker identification. Our proposed approach relies
on a graphical representation (called person instance graph, in-
troduced in Section 2) of the whole audio document and on a
global optimization technique based on integer linear program-
ming (described in Section 3) to jointly achieve speaker diariza-
tion and name propagation at the same time.

Moreover, another advantage of the proposed approach is
that, when available, acoustic speaker models can be added
seamlessly to the graph structure for joint named and acous-
tic speaker identification. It does not necessitate any additional
(and potentially fallible) late fusion step, as in El Khoury’s
work [7] where belief functions are used to combine a standard
acoustic-based and a transcript-based (SCT) system.

Person instance graphs are introduced in Section 2. The re-
sulting global optimization problem is described in Section 3.
Section 4 introduces the experimental setup and results are dis-
cussed in Section 5. Section 6 concludes the paper.

2. Person Instance Graph

A person instance graph is a weighted undirected graph G =
(V, E , p) where V is its set of vertices, E ⊂ V × V is its set
of edges, and p ∈ [0, 1]E is a function associating a weight
to every edge. Each vertex v ∈ V represents either a person
(identity vertex) or an instantiation of a person (instance ver-
tex). Every edge (v, v′) ∈ E connects two vertices in the graph
and is weighted by the probability pvv′ that vertices v and v′

correspond to the same person.

As illustrated in Figure 1 and depending on the targeted ap-
plication, the same audio recording can lead to person instance
graphs with different configurations. Instance vertices are rep-
resented as rectangles (large ones for speech turns, smaller ones
for spoken person names) and circles stand for identity vertices.

For instance, the graph from configuration 1 only contains
speech turns vertices t ∈ V . It is a complete graph where ev-
ery pair of speech turn vertices t and t′ is connected by an edge
weighted by the probability ptt′ that they are the same person.
However, a person instance graph is not necessarily complete.
Hence, the graph from configuration 4 only contains edges be-
tween speech turns t and identities i, weighted by the probabil-
ity pti that speech turn t was uttered by person i. It does not
contain any edge between speech turns, for instance.



A EC GB F

A GB F

ECB F

ECB F

[1] SPEAKER DIARIZATION

[2] NAMED ADDRESSEE IDENTIFICATION

[3] NAMED SPEAKER IDENTIFICATION (1∪2)

[4] ACOUSTIC SPEAKER IDENTIFICATION

[5] JOINT NAMED & ACOUSTIC SPEAKER IDENTIFICATION  (3∪4)

speech turn

speech transcription
spoken name

identity with model

identity from transcription

speech turn similarity
LEGEND

A B A C D

REFERENCE

addressee detection

name normalization

similarity to modelX X

YY

time

Figure 1: Person instance graph – different configuration for different applications.

2.1. Vertices

Figure 2 summarizes how vertices are automatically generated
from an audio recording.
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Figure 2: Speech processing pipeline.

2.1.1. Automatic speech recognition

First, a state-of-the art off-the-shelf speech-to-text system for
French is used to transcribe the audio stream [8]. No task-
specific adaptation was made other than adding person first and
last names from the training set into the system vocabulary. One
vertex t ∈ T is added to the graph for each resulting speech turn
– obtained following a segmentation pipeline similar to the one
described in [9].

2.1.2. Person name detection

Then, starting from the automatic speech transcription, the ob-
jective of the person name detection module is to detect person
mentions whatever their forms are. A person mention can con-
tain only part of the names (first name, middle name or last
name) or any possible combination of them.

Two different classes of models were trained, using the
Wapiti [10] implementation of conditional random fields (CRF).

The first set of models is specialized in detecting parts of person
mentions. The second one focuses on detecting complete per-
son name mentions. Generally speaking, the models use stan-
dard features as in [11].

In order to take advantage of the complementarity of these
models, a voting system (also trained with CRF) was learned
using their outputs as features. As shown in Figure 2, one spo-
ken name vertex s ∈ S can be added for each person mention
detected by this final system.

2.1.3. Person name normalization

While there can be multiple instance vertices of the same per-
son in a graph (one for every of their speech turns, one spo-
ken name instance for every time their name is pronounced),
there cannot be more than one identity vertex i ∈ I per per-
son. To ensure unicity, a unique standardized identifier is
given to each person, using the following naming convention:
First-Name_LASTNAME. Simple heuristics are used to de-
rive the standardized identifiers from the original speech tran-
script.

First, consecutive first and last names (detected by
the previous person name detection system) are concate-
nated and capitalized as required. Then, normalized names
sharing the same beginning First-Name_LASTNAME are
grouped together. A majority vote allows to select one
unique normalized version: every person name in the
class are renamed accordingly. For instance, this al-
lows to rename Jean-Remi_BAUDOT_JEAN-REMI and
Jean-Remi_BAUDOT_MERCI into Jean-Remi_BAUDOT
(French TV anchor). Finally, using the annotated training set,
forced alignment of the automatic transcription onto the manual
transcription allows to learn common speech recognition errors



and build a mapping table as showed in Table 1.

Automatic transcription Corrected person name
Valerie_ROSSO_DEBORD ⇒ Valerie_ROSSO-DEBORD

Emmanuel_VALLS ⇒ Manuel_VALLS
Gaetane_MELIN ⇒ Gaetane_MESLIN

Rosine_BACHELOT ⇒ Roselyine_BACHELOT

Table 1: Learned automatic transcription errors

These simple steps allows to improve the Slot Error Rate for
normalized person name detection from 45.0% down to 35.7%
on the test set. As shown in configuration 3 of Figure 1, each
spoken name vertex s ∈ S can be connected with probability
psis = 1 to the corresponding normalized identity vertex is ∈
IS , (where IS is the set of detected names after normalization).

2.2. Edges

Once vertices V are added to the person instance graph, edges
E ⊂ V×V can be between selected pairs of vertices. The objec-
tive of this section is two-fold: describe which edges are added,
and how the weighting function p is practically estimated:

p : E → [0, 1]

(v, v′) 7→ pvv′ = p(ID(v) = ID(v′) | v, v′) (1)

2.2.1. Speech turn similarity

The first set of edges is T × T ⊂ E . Hence, every speech
turns pair (t, t′) can be connected to obtain configuration 1 in
Figure 1.

In order to estimate ptt′ weighting probabilities, each
speech turn t ∈ T is first modeled with one Gaussian with
full covariance matrix Σt trained on the D = 12-dimensional
MFCC and energy. The similarity dtt′ between two speech
turns t and t′ is then defined as the Bayesian Information Crite-
rion ∆BIC(t, t′) [12].

dtt′ = (nt + nt′) log |Σt+t′ |
−nt log |Σt| − nt′ log |Σt′ | (2)

− 1

2
· λ ·

(
D +

1

2
D (D + 1)

)
log (nt + nt′)

where nt is the number of MFCC samples in speech turn t and
λ a penalty weighting coefficient. Finally, we apply Bayes’ the-
orem to obtain the posterior probability ptt′ :

ptt′ = p(ID(t) = ID(t′) | dtt′)

=
1

1 +
π6=
π=
· p(dtt

′ | ID(t) 6= ID(t′))

p(dtt′ | ID(t) = ID(t′))

(3)

where the prior probabilities are assumed equal (π= = π6=) and
the likelihood ratio is estimated using isotonic regression in the
logarithmic space, on the training set described in Section 4.

This is similar to our previous work [6]. It only differs in the
fact the we use isotonic regression instead of linear regression.
Indeed, we found that the former is more robust in low (and
high) similarity regions with very few samples.

2.2.2. Addressee detection

In the REPERE corpus introduced in Section 4, speakers sel-
dom pronounce their own name. Instead, spoken names s ∈ S

are used either to address another particular speaker or to talk
about someone else.

In this paragraph, we aim at deciding whether a name s
pronounced during a speech turn t refers to the speaker of the
previous speech turn t−, the next speech turn t+ or to someone
else. This allows to add s ↔ {t− | t+} edges to the graph, as
illustrated in configuration 2 of Figure 1.

In order to estimate pst− and pst+ probabilities, we rely
on the n-gram approach proposed by Tranter [2]. As shown in
Table 2, we first build the list of all contextual patterns (contain-
ing up to 4 words to the left of the detected name s, and up to 4
words to the right) from the training set introduced in Section 4.
The precision of each pattern for (previous or next) addressee
detection is then estimated on the same training set, and used as
weights pst− and pst+ of s↔ t− and s↔ t+ edges when the
same pattern is detected around a given s in the test document.

2.2.3. Similarity to model

Up to this point, no biometric supervision whatsoever was in-
troduced in the person instance graph. Hence, mining the graph
with configuration 3 from Figure 1 would result in completely
unsupervised speaker identification. However, as shown in con-
figuration 4 of Figure 1, it happens that voice models can be ob-
tained from an annotated training set for a limited set of target
speakers I∗, allowing supervised open-set speaker identifica-
tion using i-vector and probabilistic linear discriminant analysis
(PLDA).

Following the i-vector approach [13], target speaker i and
test speech turn t data is projected onto a lower dimensional
subspace retaining the speaker and channel information, the to-
tal variability space. Speaker and channel factors are further
decomposed through PLDA [14, 15] during scoring. The score
dti between the i-vector wt of speech turn t and the i-vector wi
of target speaker i is calculated as follows

dti = log
p(wt, wi | ID(t) = i)

p(wt, wi | ID(t) 6= i)
(4)

where hypothesis ID(t) = i indicates that wt and wi are from
the same speaker and hypothesis ID(t) 6= i states that they
are two different speakers. Identification scores dti are then
calibrated into probabilities pti following the open-set speaker
identification paradigm:

pti =
πi · exp (dti)

π ? +
∑
i′∈I∗

πi′ · exp (dti′)
(5)

where π ? is the prior probability that speaker is unknown (i.e.
i /∈ I∗) and prior probabilities πi are assumed to be equal.

As illustrated in configuration 4 of Figure 1, one identity
vertex per target speaker i ∈ I∗ can be added to the person
instance graph, connected to every speech turn vertex t with
probability pti, leading to the overall set of identity vertices
I = IS ∪ I∗. Note that the intersection of I∗ and IS (spoken
name identity vertices) is not necessarily empty – as illustrated
by identity vertices B and F in configuration 5.

3. Mining Person Instance Graph
All person instance graphs of Figure 1 describe the same audio
recording involving four persons (A, B, C and D). They contain
five speech turn vertices T = {t1, t2, t3, t4, t5} and five spoken
name vertices s ∈ S. Mining those graphs for speaker identi-
fication consists in automatically assigning the correct identity



Left context Right context Counts Precision English translation
w−3 w−2 w−1 w1 w2 w3 pst− pst+

– merci , [s] – – – 9 88% 0% thank you, [s]
– – merci [s] pour ces – 5 80% 0% thank you [s] for those

avec nous , [s] on – – 6 66% 0% with us, [s] we
parole est a [s] – – – 29 3% 72% let’s listen to [s]

– l’actualité avec [s] – – – 17 0% 76% latest news with [s]
– – – [s] revient sur – 6 0% 66% [s] discusses

Table 2: Sample addressee detection patterns, with their counts and precisions on the training set

vertex to each speech turn: t1 → A, t2 → B, t3 → A, t4 → C
and t5 → ? . Notice how even the most complete graph (con-
figuration 5) does not contain the actual identity of speech turn
t5, which would therefore remain unknown ( ? ).

More generally, given a person instance graph G =
(V, E , p) with identity vertices I ⊂ V , we aim at finding the
optimal identification function ID defined as follows:

ID : V → I ∪ { ? } (6)

v 7→

 v if v ∈ I (i.e. v is an identity vertex);
i if ∃ i ∈ I s.t. v is an instance of i;
? otherwise.

This can also be seen as a clustering problem where all instances
of a given identity must be grouped together (alongside the ac-
tual identity itself).

Inspired by [16], we proposed in [6] to model clustering
as an Integer Linear Programming (ILP) problem. While we
relied on written names (obtained from overlaid text in video)
to achieve unsupervised speaker identification in [6], the present
work addresses a much more difficult task by only relying on the
audio stream and more ambiguous spoken names.

3.1. Clustering function

Clustering is the task of grouping a set of objects in such a way
that objects in the same group (called cluster) are more similar
to each other than to those in other groups (clusters). Any output
of a valid clustering algorithm can be described by a clustering
function δ, as follows:

δ : V × V → {0, 1} (7)

(v, v′) 7→
{

1 if v and v′ are in the same cluster,
0 otherwise.

However, reciprocally, a function δ ∈ {0, 1}V×V does not al-
ways correspond to a clustering output. Additional constraints
are needed in order to guarantee a valid clustering: (a) re-
flexivity, (b) symmetry and (c) transitivity. We define ∆V ⊂
{0, 1}V×V the subset of functions verifying these constraints:

∆V =


δ ∈ {0, 1}V×V s.t. ∀ (v, v′, v′′) ∈ V3,
(a) δvv = 1
(b) δvv′ = δv′v
(c) δvv′ = 1 ∧ δv′v′′ = 1 =⇒ δvv′′ = 1

(8)

While it is trivial to integrate reflexivity (a) and symmetry (b)
constraints in the ILP framework, the transitivity constraints (c)
need a little bit of work, summarized in Equations (9):

∀
(
v, v′, v′′

)
∈ V3, δvv′ + δv′v′′ − δvv′′ ≤ 1

δv′v′′ + δv′′v − δv′v ≤ 1 (9)
δv′′v + δvv′ − δv′′v′ ≤ 1

Additionnally, each instance vertex can correspond to at most
one identity. Therefore, the following constraints are added to
the ILP problem:

∀v ∈ V,
∑
i∈I

δvi ≤ 1 (10)

In particular, when combined with reflexivity contraints (δii =
1), Equation (10) implies that two identity vertices cannot end
up in the same cluster:

∀
(
i, i′
)
∈ I2, i 6= i′ =⇒ δii′ = 0 (11)

Finally, we explicitely constrain spoken names s to be in the
same cluster as their corresponding identity vertex is:

∀s ∈ S, δsis = 1 (12)

3.2. Objective function

When clustering a person instance graph G = (V, E , p), we aim
at finding the clustering function δ ∈ ∆V with constraints (10)
and (12) that maximizes the intra-cluster similarity while mini-
mizing the inter-cluster similarity:

δ∗ = argmax
δ∈∆V

Lα
(δ, E , p) (13)

where α ∈ [0, 1] is an hyper-parameter controlling the size of
the clusters, and the objective function Lα is defined as follows:

Lα
(δ, E , p) = |E|−1[α ·

intra-cluster
similarity︷ ︸︸ ︷∑

(v,v′)∈E

δvv′ · pvv′ (14)

+ (1− α) ·
∑

(v,v′)∈E

(1− δvv′) · (1− pvv′)︸ ︷︷ ︸
inter-cluster
dissimilarity

]

By design, a person instance graph usually contains many
more t↔ t′ edges (between any two speech turns) than it does
t ↔ s edges (only between a spoken name and the previous
or following speech turns). Therefore, Equation (14) implicitly
gives more importance to the former, at the expense of the lat-
ter. To compensate for this behavior, we extend the objective
function in the following way:

Lα
β (δ, E , p) =

∑
x∈{T ,S,I}
y∈{T ,S,I}

βxy ·Lαxy (δ, E ∩ (x× y) , p)

δ∗ = argmax
δ∈∆V

Lα
β (δ, E , p) (15)



with αxy ∈ [0, 1], βxy ∈ [0, 1] and
∑
x,y βxy = 1. In other

words, depending on the value of hyper-parameter β, edges
may be weighted differently depending on the type of vertices
they connect.

3.3. Solution

This optimization problem falls into the Mixed-Integer Linear
Programming (MILP) category. As such it can be solved by
the Gurobi Optimizer, available freely for academic research
purposes [17]. The resulting optimal solution δ∗ can then be
used to associate a unique identity to each instance vertex:

IDδ∗ : V → I ∪ { ? }

v 7→
{

i if ∃ i ∈ I s.t. δ∗vi = 1,
? otherwise. (16)

Note that constraints (10) make sure that each instance vertex
is connected to at most one identity vertex. Moreover, it might
happen that an instance vertex v is not connected to any identity
vertex. Hence, it remains anonymous: IDδ∗(v) = ? .

3.4. Transitivity constraints relaxation

As far as person identification is concerned, Equation (16)
shows that the only important objective is that every instance
vertex v is associated to its correct identity vertex i ∈ I. In par-
ticular, there is no need for two instance vertices v and v′ of the
same person i to be connected to each other (δvv′ = 1), as long
as they are correctly connected to the correct identity vertex i
(δvi = 1 and δv′i = 1). Therefore, strict transitivity constraints
defined in Equation (8.c) can be relaxed in the following way:

∀
(
v, v′, i

)
∈ {V \ I}2 × I,
δvi = 1 ∧ δv′i = 1 6=⇒ δvv′ = 1 (17)

Formally, this is achieved by replacing the strict transitivity con-
straints defined in Equation (9) by the following loose transitiv-
ity constraints (18) and (19):

∀
(
v, v′, v′′

)
∈ {V \ I}3,

δvv′ + δv′v′′ − δvv′′ ≤ 1
δv′v′′ + δv′′v − δv′v ≤ 1
δv′′v + δvv′ − δv′′v′ ≤ 1

(18)

∀
(
v, v′, i

)
∈ {V \ I}2 × I, δvv′ + δvi − δv′i ≤ 1

δvv′ + δv′i − δvi ≤ 1
(19)

Relaxing transitivity constraints has two main practical im-
plications. The first one is that the size of the optimization prob-
lem is reduced and can therefore be solved more quickly. But,
most of all, the second benefit of relaxing constraints is that it
leads to better speaker identification performance [18].

4. Experiments
4.1. REPERE corpus

Figure 3 provides a graphical overview of the REPERE video
corpus used in our experiments [19] and to be released publicly
by ELDA in 2014.

It contains 267 videos (45 hours) recorded from 7 different
shows broadcast by the French TV channels BFM TV and LCP.
Selected shows mostly consist of talk shows, celebrity shows
or news. The audio stream is manually annotated with labeled
speech turns (“who speaks when?”). Manual speech transcrip-
tion and person name mentions are also provided.

DEVELOPMENT

TEST

TRAINING

A - BFM Story
B - LCP Info
C - Top Questions
D - Ca Vous Regarde
E - Culture Et Vous
F - Entre Les Lignes
G - Pile Et Face

28 hours 9 hours

8 hours

A B

C

DEF
G

Figure 3: Training, development and test sets each contain 7
different types of shows (A to G).

4.2. Evaluation metrics

Given the reference annotation r and the automatic hypothesis
h, we define the Identification Error Rate (IER) as the main
evaluation metric:

IER(r, h) =
confusion + miss + fa

total
(20)

where total is the total speech duration in the reference r,
confusion is the duration of speech incorrectly identified in hy-
pothesis, and miss and fa measure the duration of speech ac-
tivity detection errors (missed detection and false alarms, re-
spectively). An hypothesis is considered correct if the person
name is correctly normalized (e.g. using BREDIN in place of
Herve BREDIN is incorrect).

Though the IER conveniently provides a unique value to
compare different approaches, we also report the complemen-
tary values of precision and recall to help analyse their behav-
ior.

4.3. Experimental protocol

The training set is used to estimate parameters for computation
of ptt, pti and pts introduced in Section 2. The development set
is used to select the optimal values for hyper-parameters α and
β introduced in Section 3:

(α∗,β∗) = argmin
α,β

Edev [IER(r, h(α, β))] (21)

Hyper-parameter tuning is achieved using random search. In-
deed, Bergstra & Bengio showed that random search is usually
able to find models that are as good or better than deterministic
grid search within a small fraction of the computation time [20].
Finally, the test set is used for evaluation.

4.4. i-vector implementation details

Acoustic feature vectors are extracted from the speech signal
on the 0-8kHz bandwidth every 10ms using a 30ms Hamming
window. They consist of 15 PLP-like cepstrum coefficients [21]
with 15 delta coefficients and delta energy, for a total of 31
features. Feature warping normalization is performed using
a sliding window of 3 seconds in order to reduce the effect
of the acoustic environment [22]. The Universal Background
Model is a mixture of 256 diagonal Gaussians trained on a mul-
tilingual broadcast corpus. Then, three annotated data sources
were used to train one i-vector wi per speaker i ∈ I∗: the
REPERE training [19], the ETAPE training and development
data [23] and additional French politicians data extracted from
French radio broadcast. Only speakers with more than 30 sec-
onds training data were kept, resulting in |I∗| = 706 speaker
identity vertices. The total variability space is trained us-
ing 39356 speech segments of variable length (few seconds



to several minutes) collected over the target speakers (around
15 segments/speaker). 400-dimensional i-vector is considered
for characterization of the speech segment. In test phase, only
speaker factor (channel factor is kept fixed equal to the dimen-
sion of i-vector i.e. 400) of PLDA is varied to find the optimal
performance of the speaker identification system on develop-
ment data set. Before PLDA, i-vectors are length-normalized
by two iterations of Eigen Factor Radial algorithm [24].

5. Results and Discussion
Table 3 summarizes the performance of the proposed ap-
proaches depending on the configuration of the person instance
graphs.

5.1. Oracles

Depending on the configuration, not all speech turns can be
identified. For instance, it might happen that no acoustic model
is available for a given speaker and that their name is never
mentioned. In order to determine the IER lower bound, we per-
formed oracle experiments, also reported in Table 3. An oracle
is capable of correctly identifying any speech turn as long as the
corresponding identity vertex is available in the graph.

For instance, line C in Table 3 shows that it is theoreti-
cally possible to correctly identify 56.1% (recall) of the total
speech duration in an unsupervised way by propagation of the
spoken names (our approach only does half of it, with 29.4%
recall). When all sources of information are combined for joint
named and acoustic speaker identification, one cannot expect to
get better than IER = 14.7%. In comparison, our best system
(using both named and acoustic speaker identification) reaches
IER = 35.4%, which is still 10% better than the state-of-the art
i-vector acoustic speaker identification alone.

5.2. Unsupervised speaker identification

Lines A to C provide performance comparison for fully unsu-
pervised speaker identification. In particular, line A allows to
evaluate the precision (around 30%) of spoken name propaga-
tion (because the corresponding configuration 2 in Figure 1 only
contains t↔ s↔ i edges).

As expected, adding speech turn similarity edges t ↔ t′

for named speaker identification significantly improves recall
(it nearly doubles from 16% to 29%) because spoken name can
then be propagated to other speech turns of the same speaker.
However, the major improvement in terms of precision (from
30% to 54%) is less trivial to explain. Let us look at the example
proposed in Figure 1. While spoken name F (pronounced during
speech turn t3) could be incorrectly propagated to both speech
turns t2 and t4 with configuration 2, adding edge t2 ↔ t4 with a
very small probability may have the cascading effect to prevent
at least one of them from being tagged as F, and thus improve
precision.

On a similar broadcast news corpus (ESTER 1), the ap-
proach by Jousse et al. based on semantic classification trees [5]
led to a precision of 42% (vs. 53% for ours) and recall of 18%
(vs. 29%). We acknowledge that those results cannot be fairly
compared because of different experimental conditions. How-
ever, our proposed approach seems to be more robust because
it does not rely on a preliminary (and potentially error-prone)
speaker diarization step: speaker diarization and identification
are actually achieved at the same time.

5.3. Supervised speaker identification

Lines D and E actually provides an evaluation of a state-of-
the-art i-vector acoustic speaker identification. Indeed, it can
be demonstrated that solving the optimization problem with
configuration 4 (line D) leads to the following solution (with
θ = 1− αT I∗ ):

ID(t) =

{
i∗ = argmax

i∈I∗
pti if pti∗ > θ

? otherwise.
(22)

This is strictly equivalent to the standard open-set speaker iden-
tification paradigm: for each speech turn, select the most prob-
able speaker model as long as its probability is higher than a
predefined threshold θ.

In practice, hyper-parameter tuning on the development set
leads to the automatic selection of θ ≈ 0.20 (or αT I∗ ≈ 0.8),
almost perfectly matching the actual unknown prior probability
π ? = 0.21 of the development set.

5.4. “the best of both worlds...”

Line F of Table 3 shows how the state-of-the-art acous-
tic speaker identification approach (IER = 45.3%) and the
proposed unsupervised named speaker identification approach
(IER = 72.3%) can be advantageously combined into a joint
named & acoustic approach (IER = 35.4%, a 10% absolute –
22% relative – improvement over the state-of-the-art baseline).

As illustrated in configuration 5 of Figure 1, this combi-
nation does not rely on any (potentially error-prone) additional
fusion step. It suffices to merge configurations 3 and 4 into a
joint graph and apply the same hyper-parameter tuning and ILP
optimization as before.

While late fusion approaches usually lead to increase in pre-
cision with similar recall, we note that our proposed scheme
benefits from the intrinsic complementarity of the two sub-
systems – with improvement for both precision (+2.5%) and
recall (+10.3%).

t↔t'

t↔s

t↔i

NAMED SPEAKER
IDENTIFICATION

JOINT SPEAKER
IDENTIFICATION

ACOUSTIC SPEAKER
IDENTIFICATION

t↔i
t↔t'

t↔s

Figure 4: Hyper-parameters β = [βT T , βT S , βT I ] after opti-
mization on the development set.

Finally, Figure 4 provides a useful insight at the weights β
given to each type of edges (t ↔ t′, t ↔ s and t ↔ i) by the
hyper-parameter tuning step, for the three proposed approaches.
It is noticeable that, even if the supervised acoustic approach
performs much better than the unsupervised one (IER = 45.3%
vs. 72.3%), t↔ s and t↔ i edges are still given approximately
the same weights in the joint approach. This confirms the ob-
servation that they are very complementary.

5.5. Name detection errors

Table 3 also contains experimental results with manual speech
processing pipeline (i.e. manual speech transcript, manual per-
son name detection and manual person name normalization),



Fully automatic name detection Fully manual name detection
IER Precision Recall IER Precision Recall

A Named addressee identification 85.6% 30.3% 16.0% 80.5% 29.8% 21.4%
B Named speaker identification 72.3% 53.7% 29.4% 63.1% 53.3% 39.2%
C . . . vs. oracle 45.9% 100% 56.1% 31.1% 100% 71.6%
D Acoustic speaker identification 45.3% 68.9% 57.8% 45.3% 68.9% 57.8%
E . . . vs. oracle 33.4% 100% 68.6% 33.4% 100% 68.6%
F Joint named & acoustic speaker identification 35.4% 71.4% 68.1% 35.8% 71.5% 68.1%
G . . . vs. oracle 14.7% 100% 88.0% 8.8% 100% 94.4%

Table 3: Evaluation on test set for various graph configurations (to be compared with performance of matching oracles)

allowing to estimate the influence of errors made by the ini-
tial speech processing steps on the overall speaker identifica-
tion. Automatic speech recognition obtains a word error rate
of WER = 18.3%, spoken name detection a slot error rate of
SER = 31.9% and finally, normalized spoken name detection
reaches SER = 35.7%.

It is remarkable that switching from manual to automatic
name detection never degrades precision (while it does recall).
This can be partially explained by the high precision (79%) and
lower recall (67%) of the final normalized spoken name detec-
tion.

However, we also notice that the joint named & acoustic
speaker identification does not seem to be impacted by person
name detection errors. This leads us to conclude that most ad-
dressee name mentions are correctly identified, whereas most
errors must actually correspond to mentions of person name not
taking part into the conversation. We plan to carefully analyze
those errors in the future.

6. Conclusion
We proposed to address the problem of named speaker iden-
tification in TV broadcast using the person instance graph
paradigm. Each audio document is modeled as an undirected
graph where speech turns, spoken names and person identities
are vertices connected to each other by edges weighted by the
automatically estimated probability that they represent the same
person.

This unified framework allows to straightforwardly com-
bine multiple modules (e.g. speech transcription, named entity
detection, addressee detection or even acoustic speaker identi-
fication) into a common optimization problem solved by inte-
ger linear programming. Experimental results on the REPERE
corpus show that the proposed approach leads to a 10% error
decrease over a state-of-the-art i-vector speaker identification
system (from 45% down to 35%).

While, in this paper, we only rely on the audio stream to
identify speakers, the REPERE corpus actually is a TV broad-
cast corpus where speakers are also introduced using screen
overlays containing their name. We used this source of infor-
mation in a previous work to achieve completely unsupervised
speaker identification [6]. While a speaker seldom pronounces
their own name, a namew written on screen usually (with prob-
ability ptw = 95% on the REPERE corpus) corresponds to the
current speech turn t.

In order to take this reliable source of information into ac-
count, after a first step of video optical character recognition,
one can simply connect each written name vertexw to the cooc-
curring speech turn t with probability ptw. Experiments on the
very same corpus show that it leads to a significant 15% er-
ror decrease (down to IER = 20.0%) over the joint named &

acoustic speaker identification system. This results show how
easily the proposed person instance graph can integrate addi-
tional sources of information when they become available.

However, the proposed approach does have some limita-
tions related to scalability. The cardinality of the search space
∆V is O(2|V|×|V|) and the number of constraints is O(|V|3).
The resulting integer linear programming problem quickly be-
comes intractable for |V| � 100. While Dupuy et al. can
massively prune their ILP problem into simpler problems, their
proposed simplification cannot be directly applied to our own
ILP formulation [25]. Therefore, alternative graph-mining tech-
niques should be investigated when the number of vertices in-
creases. For instance, graph embedding approaches described
in [26] for acoustic-only speaker recognition could be extended
to the proposed multimodal case.
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“Speaker Diarization : about whom the Speaker is Talk-
ing?,” in IEEE Odyssey, 2006.
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