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LIMSI and Vocapia Research developed two main speaker ver-
ification systems which were combined for submission to the NIST
SRE 2012 core condition: a GSV-PCA system and a Lattice MLLR-
based m-vector system. Both are super-vector based.

1. GSV-PCA SYSTEM

In this system, target speakers are represented by Speaker Character-
ization Vectors (SCVs) which are obtained by projecting their Gaus-
sian Mixture Model (GMM) super-vectors [1] from adapted models
on a vector space as,

SCVr = (GSVr)
t.P (1)

where SCVr represents the SCV of the rth target speaker obtained
by projecting his/her GMM super-vector,GSVr , on vector space, P.

The vector space, P, is built by Principal Component Analysis
(PCA) of pooled GMM super-vectors from many speakers and can
be thought as analogous to the total variability space in state-of-the-
art speaker verification system using i-vector concept [2]. During
test, SCV of the test utterance is scored against the claimant specific
SCV obtained during training. Before scoring, SCVs are conditioned
for session variability compensation.

GMM super-vector is calculated with respect to a Universal
Background Model (UBM) with 3 iterations of MAP adaptation
technique for a given speech data. We use a UBM with 512 Gaus-
sian components and 47 dimensional features in this system. It
gives 512 × 47 = 24064 dimensional GMM-super-vector. The
vector space P is calculated by PCA using 21621 utterances (i.e.
21621 GMM super-vectors) from 1871 speakers over various SRE
databases.

For session variability compensation, we use recently proposed
Eigen Factor Radial (EFR) algorithm in [3] for conditioning the
SCVs. EFR iteratively normalize the length of the SCV (i.e. w) to
handle the session variability compensation as in Eq.(2).

ŵ ← V − 1
2 (w − w)√

(w − w)tV −1(w − w)
(2)

where ŵ represents the normalized SCV. V andw denote the covari-
ance matrix and mean vector of the training SCVs, respectively, in
the successive iterations.

During the test, Mahalanobis distance measure is used for scor-
ing between the two normalized SCVs (i.e. ŵ1, ŵ2) as,

score(ŵ1, ŵ2) = (ŵ1 − ŵ2)tΩ−1(ŵ1 − ŵ2) (3)

where Ω is the within-class covariance matrix calculated using de-
velopment data set.
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2. LATTICE MLLR M-VECTOR SYSTEM

Maximum Likelihood Linear Regression (MLLR) [4] is commonly
used for speaker adaptation in Hidden Markov Model (HMM)-based
ASR systems. It estimates an affine transformation (A, b) with re-
spect to a Speaker Independent (SI) HMM in Maximum Likelihood
(ML) sense. It can be expressed as,

µ̂s = Aµs + b; Σ̂s = Σs (4)

where µs and Σs are the Gaussian mean and covariance matrix of
the state s in SI model, respectively. It is well known to that MLLR
transformation (i.e. (A, b)) contains speaker related information and
is commonly used in super-vector [5] form for speaker recognition.
Fig.1 graphically illustrates the MLLR super-vector estimation with
respect to SI HMM of rth speaker using his/her speech data. Gen-
erally, MLLR super-vectors are used for speaker modeling in a Sup-
port Vector Machine (SVM) framework, and an Automatic Speech
Recognition (ASR) front-end is used for estimating several MLLR
transformations for a given (speaker) speech segment with respect
to pre-defined phonetic classes. Several variant of speaker recogni-
tion system based on MLLR super-vector can be found in literature
[6, 7].
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Fig. 1. MLLR super-vector extraction from MLLR transformation of
the rth speaker using his/her training data with respect to a speaker
independent HMM.

Recently, in [8, 9] has been proposed a different way of speak-
ers characterization by their MLLR super-vectors than conventional
approach. The proposed method in [9] is called m-vector, where
speakers are represented by m-vectors which are obtained by uni-
form segmentation of their MLLR super-vectors using an overlapped
sliding window. It gives several m-vectors to represent a speaker and
each m-vector is processed separately which constitutes several sub-
systems. Fig.2 graphically illustrates the m-vectors extraction of rth

speaker from his/her MLLR-super-vector with overlapped sliding
window of 500 elements. During test, m-vectors of the test utterance
are scored against the claimant specific m-vectors. Before scoring,



MLLR super−vector of speaker, r

[1× 500]

mr
1 mr

2

[1× 500]

sub-sys1 sub-sysnsub-sys2

[1× 500]
mr

n

Fig. 2. m-vector extraction for the rth speaker from his/her MLLR
super-vector using an overlapped sliding window of 500 elements
with 50% overlap of its adjacent m-vectors.

m-vectors are conditioned by EFR algorithm for session variability
compensation. It is shown in [9] that m-vector system shows promis-
ing performance with compared to state-of-the-art i-vector system
even though it used UBM for estimating the MLLR transformation
without any phonetic knowledge of the speech segment.

For NIST SRE 2012, we enhanced the m-vector approach by in-
tegrating an ASR system. In order to be more robust to transcrip-
tion errors, latticed-based MLLR transforms are estimated using
the word-level lattice output of the ASR, converted into a phonetic
graph. Multi-class MLLR super-vectors are then extracted with re-
spect to phonetic classes (vowels and consonants). In this system, we
use 42 dimensional feature vectors which gives 2×42×42 = 3528
dimensional MLLR super-vector (without bias); more details about
the use of lattice MLLR for speaker verification can be found in [10].

3. EXPERIMENTAL SETUP

3.1. GSV-PCA system

47 dimensional PLP feature vectors (15 static with their ∆, ∆∆,
∆E and ∆∆E) are extracted from the speech signal at 10 ms rate
over the 0-3800 Hz bandwidth. Voice activity detection is then ap-
plied on the feature vectors to discard the less energized or silence
frames. Finally, energized frames are normalized to zero mean and
unity variance at utterance level. Two gender dependent UBMs hav-
ing 512 Gaussian components with diagonal covariance matrices,
are trained using data from NIST 2004 SRE.

For noise compensation, we use Feature Mapping (FM) [11]
technique. As per feature mapping, we derive different noise level
dependent GMM models (from−15 dB to +15 dB with increment
of 5 dB over babble i.e. crowd and car noise) from noise indepen-
dent UBM with a single iteration of MAP adaptation using respec-
tive level noisy data. These data were obtained by artificially adding
[12] noise from the NOISEX-92 to clean speech signals, at different
SNR levels. During training and test phase, first best noise model
of the utterance is selected using the top-10 scoring, then feature
vectors are mapped from the best selected noise dependent model
space to noise independent model space i.e. UBM space using top-1
decoding on respective systems (male and female).

For PCA and EFR, 21621 utterances (target training example
plus 12399 utterances of 890 non-target speakers) over 1871 speak-
ers (including targets who have more than 5 examples in training) are
used. Non-target data are collected from NIST 2004-2005, Switch-
board II part 1, 2 & 3, Switchboard cellular part 1 & 2, with about
15 sessions per speaker. In MAP adaptation, the value of relevance
factor 10 is considered for all systems.

3.2. m-vector system

For spectral analysis, 42 dimensional feature vectors including 12
Mel-PLP feature, log-energy and F0 along with their first- and
second-order derivatives are extracted from the speech signal each
10 ms using a 30 seconds Hamming window over bandwidth 0-
3800Hz. Voice activity detection is applied as a pre-processing step
to discard less energized or silent frames. Finally, detected speech
segments are normalized to zero mean and unit variance at the utter-
ance level.

The Large Vocabulary Continuous Speech Recognition
(LVCSR) system used MLLR transforms estimation is similar to
the LIMSI RT’04 LVCSR system [13]. The acoustic models are
trained on about 2000 hours of manually transcribed Conversa-
tional Telephone Speech (CTS) data using the PLP+F0 features
concatenated with additional MLP features [14]. The model sets
cover about 48k phone contexts, with 11.5k tied states and 32
Gaussians per state. Silence is modeled by a single state with
1024 Gaussians. Two manually derived phonetic classes: vowels
and consonants are used for MLLR transformations, resulting in a
42 × 42 dimensional MLLR transformation for each phonetic class
(the bias b is discarded since it does not provide significant gain in
our setup). Totally, we get a (2 × 42 × 42) = 3528 dimensional
MLLR super-vector.

In this system, Linear Discriminant Analysis (LDA) is applied
on the m-vectors to discriminant the speakers before conditioning.
Each m-vector sub-system has its own LDA projection matrix. For
session variability compensation, two iterations of the EFR are ap-
plied on the m-vectors, associated to the Mahalanobis distance mea-
sure for scoring. Scores of the different sub-systems are fused
for a particular LDA dimension across all sub-systems, with equal
weights given to all sub-systems. The data set for LDA and EFR
algorithm are used as same as in GSV-PCA system.

4. RESULTS ON DEVELOPMENT DATA SET

Table 1 shows the comparison of speaker verification performance
using m-vector technique for different approach of MLLR super-
vector estimation on NIST 2008 SRE core condition (male speak-
ers) over various tasks. The performance of the overlapped m-vector
systems are shown for m-vector size of 500 elements which corre-
spond to size of the sliding window. Disjoint -full case speakers are
represented by their full MLLR super-vectors [8]. Here, only 890
non-target speakers data (i.e. 12399 utterances) are used for LDA
and EFR, which are totally disjoint from NIST 2008 SRE. The sys-
tem performances are shown using Equal Error rate (EER) and Min-
imum Detection Cost Function (MinDCF) as per 2008 SRE evalua-
tion [16]. For fusion, equal weights are given to all systems. In case
of UBM system, MLLR super-vector for a given utterance is de-
rived from a global MLLR transformation which is estimated with
respect to UBM (without any transcriptions). It gives 1764 dimen-
sional MLLR super-vector (without bias).



Table 1. Comparison of performance of speaker verification with m-vector technique using different approach of MLLR super-vector estima-
tion on NIST 2008 SRE core condition (male speakers) over various tasks.

System m-vector Optimal DET task: (%) EER (MinDCF)
extraction method size LDA dim. 1 3 4 5 6 7
(A1) Disjoint- full 1764 50 15.00 15.54 15.55 10.53 9.32 6.67

UBM (0.0614) (0.0641) (0.0612) (0.0467) (0.0485) (0.0362)
(Baseline)

(A2) Overlapped 500 50 14.92 15.34 13.00 9.55 7.70 5.74
(0.0588) (0.0611) (0.0514) (0.0380) (0.0378) (0.0271)

Fusion (A1,A2) - - 13.95 14.37 12.63 8.55 7.70 5.51
(0.0557) (0.0579) (0.0491) (0.0353) (0.0382) (0.0259)

(B1) Disjoint- full 3528 50 12.86 13.30 10.36 8.45 6.34 3.89
ASR 1 best (0.0492) (0.0510) (0.0451) (0.0337) (0.0395) (0.0214)

(B2) Overlapped 500 50 12.51 12.88 9.61 7.69 5.89 3.18
(0.0480) (0.0498) (0.0417) (0.0293) (0.0354) (0.0160)

Fusion(B1,B2) - - 11.82 12.09 8.77 7.34 5.89 3.13
(0.0445) (0.0464) (0.0407) (0.0274) (0.0346) (0.0144)

(C1) Disjoint- full 3528 50 11.98 12.46 9.39 8.20 7.05 3.42
ASR Lattice (0.0470) (0.0487) (0.0410) (0.0322) (0.0379) (0.0180)

(C2) Overlapped 500 50 11.92 12.25 8.52 7.09 5.74 2.97
(0.0455) (0.0471) (0.0392) (0.0260) (0.0351) (0.0162)

Fusion(C1,C2) - - 11.21 11.52 8.07 6.75 5.54 2.88
(0.0426) (0.0439) (0.0382) (0.0259) (0.0345) (0.0147)
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Fig. 3. Comparison of performance of speaker verification of m-
vector systems (fusion) for different approach of MLLR super-vector
extraction on NIST 2008 SRE core condition over different tasks.

Fig.3 compares the Detection Error Tradeoff (DET) plots of the
respective m-vector systems (fusion) on NIST 2008 SRE core con-
dition over various tasks. From Table 1 and Fig.3, it is observed that
m-vector system with phonological knowledge i.e. ASR shows sig-
nificantly better performance than conventional UBM based system.
And lattice based system also reflects the accountability of erroneous
in speech transcription for MLLR transformation by reducing the er-
ror rate over the conventional 1-best hypothesis method [4]. More
details on this system can be found in [15].

Table 2 shows the performance of speaker verification with
GSV-PCA and m-vector techniques on NIST 2012 SRE develop-
ment data set. The training and testing dataset are developed from
the target speakers (who have multiple sessions for training) training
example by dividing them into two disjoint parts: three randomly
chosen sessions per speaker are taken for the test set, three other for
a validation set, and the remaining sessions are kept for training the
models. The validation set allowed to verify that the performance
is stable according to the selection of the sessions in the test set.
It results respectively, 36000 and 52944 test trials (approximatively
5% true trials, the remaining being impostor trials) for male and fe-
male experiments. In this case, PCA and EFR are built using the
data mentioned in experimental setup (Sec.3) of the respective sys-
tems. The performance of GSV-PCA system and m-vector systems
are shown for respectively, PCA 800 (i.e. SCV size) and LDA 50
dimensions. System performances are measured as per NIST 2012
SRE cost function [17] and EER.

5. SUBMITTED SYSTEMS

Scores of both systems were converted to log-likelihoods using
piece-wise linear transformation estimated on the development set.

The primary system submitted by LIMSI and Vocapia Research
to NIST SRE 2012 for the Core test condition is a score-level linear
fusion between both systems with combination weights optimized
on the development set.



Table 2. Comparison of performance of speaker verification of GSV-PCA and m-vector systems on NIST 2012 SRE development dataset.

System cnorma1 cnorma2 cprimary EER (%)
Male ASR-Lattice: m-vector 0.0952 0.1645 0.1298 0.99

GSV-PCA 0.0771 0.1755 0.1263 0.91
Female ASR-lattice: m-vector 0.2190 0.4045 0.3118 2.10

GSV-PCA 0.1420 0.2785 0.2102 1.44
Male + Female ASR-Lattice-m-vector 0.1702 0.3102 0.2402 1.58

GSV-PCA 0.1159 0.2372 0.1766 1.16
Fusion(GSV,m-vector) 0.1092 0.2169 0.1630 0.87

The contrastive system consists in the Lattice MLLR m-vector
system; for some trials, no speech was detected in the audio may be
due to the low SNR and the system could not provide a score; in this
case, scores computed using a generic UBM-based MLLR m-vector
system were used instead.
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