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Abstract

This paper describes the systems submitted by Vocapia Re-
search and LIMSI for the shared task on Code-switched Spoken
Language Identification, organized in the conjunction with the
First Workshop on Speech Technologies for Code-switching in
Multilingual Communities 2020. Our primary system combines
an acoustic approach based on i-vector modeling of audio seg-
ments with a phonotactic approach that focuses on sequences of
language-independent phone units. Both modeling approaches
provided comparable performance, and a gain was obtained by
a simple linear combination of their scores, showing their com-
plementarity. One of our submissions obtained first rank for all
combinations of tasks and language pairs. For the utterance-
level detection task (task A), an F-measure of 76.0% was ob-
tained with our combined system for which the average accu-
racy on the development set was 83.3%. For the frame-level
detection task, the average accuracy was 81.2% on the devel-
opment set and 78.7% on the evaluation set. However, a de-
tailed analysis reveals a very high rejection of the 200ms code-
switched frames, which comprise only 12% of the corpus. This
shows that a more precise modeling of code-switched segments
is needed for an accurate segmentation.

Index Terms: language identification, code-switching, phono-
tactic model

1. Introduction

Code-switching is very usual in multilingual communities. In
formal situations, a speaker may choose one language accord-
ing to the situation. For such speech data, automatic language
identification can be performed at the speaker turn or docu-
ment level before further content processing. However, in more
spontaneous cases, short code-switched segments may occur
in the middle of a sentence. This type of code-switching is
much harder to detect and adversely affects the speech tran-
scription, since words in the alternative language will be miss-
ing from the vocabulary of the speech-to-text system. Al-
though code-switching has been studied in the linguistic com-
munity for many years, it has recently started attracting grow-
ing interest in the speech technology domain with the collection
of several code-switching corpora for Cantonese-English [1],
Mandarin-English [2], Frisian-Dutch [3], Hindi-English and
Spanish-English [4], South African languages [5], Egyptian
Arabic-English [6] or CanVEC Vietnamese-English [7]. This
interested has also resulted in special sessions at Interspeech
conferences since 2017, covering various language pairs (e.g.,
Mandarin-English [8], Hindi-English [9], isiZulu-English [10],
English-Spanish [11], French-Algerian Arabic [12] or Frisian-
Dutch [13, 14]) and addressing linguistic analysis, speech syn-
thesis [15], code-switching detection [14], language model-
ing [11, 16] or automatic transcription [17, 18, 19, 20].

In this paper, we describe the systems submitted by Vocapia
Research and LIMSI laboratory for the shared task on Code-
switched Spoken Language Identification (LID), which was
organized in conjunction with the First Workshop on Speech
Technologies for Code-switching in Multilingual Communities
2020'. Our system combines an acoustic approach based on
the i-vector modeling of audio segments and a phonotactic ap-
proach focusing on sequences of language-independent pho-
netic units. The outputs of the two component systems were
also submitted individually to obtain contrastive results.

The next section summarizes the two evaluation tasks and
experimental conditions. Section 3 describes the component i-
vector and phonotactic systems. Their performance on the de-
velopment and evaluation data is presented in Section 4, before
a conclusion.

2. Task description

A short summary of the tasks and evaluation plan is given here
along with some characteristics of the corpus. A complete de-
scription is available from the link in footnote 1.

2.1. Subtasks

Two subtasks were proposed: (Task A) utterance-level identifi-
cation of monolingual vs. code-switched utterances; (Task B)
frame-level language identification in code-switched utterances,
where frames are 200ms contiguous audio segments. For each
task, three language pairs were considered with one primary In-
dian language among Gujarati, Telugu and Tamil and English
as a possible code-switching target. The primary language was
known a priori.

2.2. Evaluation metric

The primary evaluation metric for the evaluation was the ac-
curacy rate, defined as the ratio of correctly predicted samples
over the total number of samples. Task A is a sentence-level bi-
nary classification task (code-switched vs. non code-switched
utterance), while task B requires a frame-level labeling with 3
classes (silence, primary language or English). There is no spe-
cific cost function, so the prior distribution of the classes is the
factor governing the relative weight of each error type.

In this paper, we also report three other metrics: recall and
precision rates expressed as the number of correctly detected
code-switched samples (utterances for task A or frames for task
B) over the number of expected or hypothesized samples, re-
spectively; the F-measure is defined as the harmonic mean of
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the recall and precision; and the false positive and false negative
rates expressed as the number of false positive (resp. negative)
hypothesis over the total number of positive (resp. negative)
code-switched samples.

The evaluation plan also proposed an EER metric defined,
for task A, as the total number of false rejects and false accepts
divided by twice the total number of sentences. Being redun-
dant with the accuracy rate, this metric is not reported in the

paper.

2.3. Corpus

The training and evaluation data is composed of sets of sen-
tences with durations ranging from 2 and 20 seconds, and an
average duration of 6.8 sec. For task A, about 8000 training sen-
tences and 1000 development sentences without code-switching
were provided for each target language (Gujarati, Tamil and Tel-
ugu) along with a similar number of code-switched sentences.
The detail is provided in Table 1.

Table 1: Number of sentences without or with code-switching
(resp. no CS and CS) in the training and dev. sets for task A.

Training Development

Language | no CS CS | noCS CS
Gujarati | 8161 8619 1012 1079
Tamil | 8965 8978 1123 1135
Telugu | 8766 8225 1088 1047

For task B, only code-switched sentences were provided
with the corresponding 200ms frame-level annotation: 8000
sentences for training (about 15 hours) and 1000 sentences for
development (about 2 hours) per language. On average, 21%
of the frames are labelled as silence, 12% as English and the re-
maining 67% as either Gujarati, Tamil or Telugu. Table 2 shows
the detail for the training and development sets.

Table 2: Cumulated duration (hh:mm) of primary language, En-
glish code-switched and silent frames (resp. P, CS and SIL) in
the training and development sets for task B.

Training Development
Language P CS SIL P CS SIL
Gujarati | 10:39 2:08 3:24 | 1:20 0:16 0:25
Tamil | 10:52  1:47  3:32 | 1:21  0:15 0:26
Telugu | 10:53  1:50  3:27 | 1:21  0:14 0:25

Note that the additional monolingual datasets provided for
the three languages were not used to develop the submitted sys-
tems described in this paper.

3. Submitted systems

In this section, we describe the two types of systems developed
for the detection of code-switched utterances or frames and used
for the evaluation: one based on the acoustic (i-vector) approach
and other on a phonotactic approach. In addition we also sub-
mitted results obtained by combining the outputs of these two.

3.1. i-vector acoustic modeling

The i-vector framework [21] has been successfully applied in
Speaker Verification [22, 23] and Language Identification [24]
tasks. The i-vector system characterizes the language of an

utterance with vectors obtained by projecting the speech data
onto a total variability space. The approach is generally formu-
lated as follows: S = m + T'w where w is called an i-vector,
T is a matrix representing the total variability space; and m
and S represent Gaussian supervectors (GSV) obtained from a
language-independent and a language dependent model respec-
tively. The language-independent model is also called Univer-
sal Background Model (UBM).

In our implementation, the input features of the i-vector lan-
guage identification system are 40 dimensional phonetic bottle-
neck features. For each frame, a 32 ms window and a 10 ms
offset are used to extract 32-band Mel scale spectrogram con-
catenated with log-pitch, delta-log-pitch and voicing probabil-
ity. Then, TRAP-DCT features [25] are estimate on 100 ms
windows (11 frames), retaining the first 6 coefficients includ-
ing the DC component [26]. The resulting TRAP-DCT features
with 210 dimensions (35x6) are input to a bottle-neck DNN
that has 3 hidden layers with 2000 units and 1 bottle-neck hid-
den layer with 400 units. Each hidden layer is followed by a
non-linearity p-norm unit [27] which reduces the dimension of
the layer to 200 and 40, respectively. The phonetic bottle-neck
DNN was trained on about 1000 hours of English Broadcast
Data. The bottle-neck features are extracted without cepstral
mean or variance normalization (CMVN).

The full covariance GMM with 2048 components, the
UBM, and an i-vector extractor are estimated using the train-
ing data using the Kaldi toolkit [28]. A 600-dimension i-vector
is extracted for each training utterance or segment. The i-vector
length is normalized to unity [23]. A language-specific i-vector
is obtained by averaging the normalized i-vectors for each train-
ing utterance [23].

During the test phase, an i-vector is extracted for each
test utterance or segment, and is processed to compensate for
session variability. Different techniques can be used to com-
pute the test utterance scores. Multi-class logistic regression
(MLR) [29] is used in this work. The use of probabilistic linear
discriminant analysis (PLDA) [30] such as applied in [22, 23],
was explored for the NIST 2015 Language Recognition Eval-
vation (LRE15) [31] but since the MLR method provided bet-
ter results on Broadcast data on an internal LID dataset it was
adopted here. The MLR model is estimated on all training utter-
ances/segments using an expectation-maximization algorithm.

For Task A, and for each of the 3 Indian languages, an i-
vector is extracted for each training utterance (code-switched or
non-code-switched) and then a logistic regression (LR) classi-
fier (positive and negative code-switched classes) is estimated
on these i-vectors. In the test phase, an i-vector is extracted for
each test utterence and scored using the LR model. No voice
activity detection (VAD) is performed on the training and test
sentences before acoustic features extraction in this task.

For task B, all audio files of the training, developement
and evaluation data are analyzed using 600ms-long overlapping
windows with a 200ms step (a frame). The label of the seg-
ment was associated to the frame at the center of the window,
with e.g. the [0-600ms] window corresponds to the frame [200-
400ms]. For each of 3 the Indian languages, an MLR classifier
is estimated on all training i-vectors (one/frame) for each class
(silence, native language and English). In the test phase, an
i-vector is extracted for each test frame and scored using the
MLR model. For this task, the use of an explicit i-vector class
for silence trained on the target dataset significantly improved
the silence frame detection performance over using either GMM
or DNN pretrained VAD models.



3.2. Phoneotactic identification

The phonotactic approach to automatic language identification
relies on the idea that the phonetic sequence in an audio sample
is characteristic of the language used. It has been shown over
time to perform very competitively compared to purely acoustic
approaches, from phone-based acoustic decoding [32] to paral-
lel phone recognizers [33] and phone lattices, as presented to
LRE1S5 [31]; RNN-based phonotactic models were also shown
as very efficient [34]. Similar to [31], phone decoders using
phonetic models from several languages are used to decode the
training data and to estimate phone n-gram statistics on the re-
sulting phone lattices for each target class; then, given a new ut-
terance, expectation of its phonetic log-likelihood is computed
according to each target models, resulting in a set of posterior
scores. The implementation relies on the VoxSigma Software
Suite, a commercial product from Vocapia.

For task A and for each target language, a pair of phonotac-
tic models was estimated separately using either the positives
code-switched sentences or the negative non-code-switched
sentences. The development/evaluation utterances were then
scored against the matching language pair. Given the global
balance between positive and negative samples in the data set, a
0.5 decision threshold was chosen, i.e. the class with the highest
posterior score was selected.

To train models for task B, the frames labeled as silence
in the reference annotation were discarded and a pair of models
(one for English and one for the primary language) were trained
for each target language on the associated training audio seg-
ments. For development and evaluation, the frame-level VAD
from the i-vector module, as described at the end of previous
sub-section, was first applied and frames automatically labelled
as silence were discarded prior to further processing. The re-
maining frames were scored against both the code-switched and
non code-switched models. Similar to the i-vector system, each
frame was extended to a 600ms audio segment centered around
it for training or scoring. As explained in Section 2, the distri-
bution of code-switched and native speech frames is unequal,
so a subset of the training data was kept apart and used for to
optimize the decision threshold for the code-switched class.

3.3. Systems combination

Since i-vector and phonotactic modeling capture different, and
potentially complementary, information, the two models were
combined for the primary submission. For both tasks, a linear
combination of the posterior scores of the phonotactic and the
i-vector models was used, using weights optimized on the de-
velopment data.

Table 3: Task A: accuracy (%) by language on the development
/ on the evaluation data sets for the phonotactic, i-vector and
combined systems. Accuracy of the organizer’s baseline system
is also given on the dev set. Best score on evaluation data in
bold.

Language baseline phonotactic i-vector  combined

Gujarati 76.8  79.1/754 84.1/573 84.3/68.8

Tamil 712 774/76.6 79.1/764 822/79.8
Telugu 740 79.0/77.1 78.8/78.3 81.5/79.4
Average 740 785/764 80.6/70.7 83.3/76.0

Precision (in %)
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Figure 1: Task A: recall and precision of monolinugal vs. code-
switched utterance detection on the dev set, for the phonotactic,
i-vector and combined systems averaged across all languages.
F-measure is given for the chosen operating point.

4. Experiments and results

Figure 1 shows the recall and precision for the code-switched
utterance detection (Task A) on the development data set, as
computed globally across the three languages for the combined
system and the individual phonotactic and i-vector systems. The
combination weight was set to 0.4 for the phonotactic scores
and 0.6 for the i-vector scores. We can see that the i-vector sys-
tem generally performs better than the phonotactic system, and
that their combination provides a gain for almost all operating
points. This is confirmed by looking at the detailed accuracy by
language in Table3. On the development data, the gap between
the phonotactic and i-vector models is especially high for Gu-
jarati (79.1 vs 84.1%), but even in this case the combination is
slightly positive. The performance difference is less for Tamil
(and even slightly better for the phonotactic models for Telugu),
where their combination provides more than a 2% absolute gain
in accuracy. On average for the three languages, the combined
system achieves an accuracy of 83.3% on the development set,
i.e. an error rate of 16.7%.

On the evaluation dataset, there is a very specific and dra-
matic degradation of performance for the i-vector system on
Gujarati, dropping from 84.1% on the development set to 57.3%
on the evaluation set, which carries over to a lesser extent in the
combined system. This resulted from a shift of the Gujarati i-
vector score distribution on the evaluation set compared to the
development set (a 22% relative increase of the average score),
which was not observed for the other languages. It is interest-
ing that the phonotactic system proved to be much more robust,
with a more limited reduction from 79.1% to 75.4%. For Tamil
and Telugu, the performance on the evaluation data was slightly
reduced compared with the development data, while keeping
a 1-3% absolute gain in accuracy due to system combination.
Overall, the combined system has an accuracy of 76.0%, i.e. an
error rate of 24%.

For Task B, Figure 2 shows the balance between the false
positive and false negative rates of code-switched frame detec-
tion as a function of the decision threshold. The axes are scaled
by their standard normal deviates, and non-speech frames were
excluded for the figure. The phonotactic and i-vector systems
show similar behaviors and their combination brings an im-
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Figure 2: Task B: false positive and false negative rates of code-
switched frame detection computed on the development set and
cumulated on all language pairs, for the phonotactic, i-vector
and combined systems. Non-speech frames are excluded.

provement across all operating points. The discrimination be-
tween code-switched and non code-switched frames appears to
be a difficult task with an equal error rate above 30%. The actual
accuracy rates shown in Table 4 confirm this behavior both on
the development and evaluation data sets. The combined sys-
tem accuracy rates averaged across the 3 languages are 81.2%
and 78.7%, respectively.

Given the relatively low prior of the code-switched samples
at about 12%, the decision thresholds of the systems were op-
timized according to the evaluation primary metric towards a
very low false positive (or false alarm) rate for code-switching
and thus a very high negative (or miss) rate. The confusion
matrix in Table 5 between the three target classes (silence,
code-switched English or primary language) of the combined
system, cumulated for all languages on the development set,
shows that only 3016 code-switched frames out of 13332, i.e.
22.6%, were correctly labelled, leaving room for improvement.
Conversely, identification was correct for 68,089 out of 72,771
speech frames in the primary language, i.e. 93.5%.

One important factor impacting code-switching detection
should be the length of the segments; furthermore, code-
switched segment shorter than the 600ms analysis window will
provide a very sparse information to the phonotactic or i-vector
modelling. We show on Figure 3 the histogram of code-
switched segments according to their duration: 56% of the seg-
ments last only 200 or 400ms. We also show the accuracy of
our combined system on the development set cumulated for all
languages, in the situation where code-switching would account
for half of the spoken content, corresponding to the equal-error-
rate configuration. As expected, the accuracy increases with du-
ration, raising from 63% for 200ms segments to 74% for 1.2sec
segments.

5. Conclusion

The shared task on Code-switched Spoken Language Identi-
fication allowed us to compare different approaches for the
utterance-level and frame-level detection of code-switched
speech, thanks to the annotated corpora provided in three lan-
guage pairs. For each combination of task and language pair,
one of our systems was ranked first among the submitted sys-

Table 4: Task B: accuracy (%) by language on the development /
evaluation data sets for the phonotactic, i-vector and combined
systems. Accuracy of the organizer’s baseline system is also

given on the dev set. Best score on evaluation in bold.

Language baseline phonotactic i-vector  combined
Gujarati 76.7  799/769 80.0/76.9 80.5/77.7
Tamil 76,5  79.5/715 80.8/78.6 81.2/78.8
Telugu 776  80.0/789 814/789 81.8/79.6
Average 769  79.8/71.8 80.7/78.1 81.2/78.7

Table 5: Task B: frame-level confusion matrix for the combined
system on the development set; Columns for reference, rows for
hypothesis. SIL stands for non-speech, CS for code-switched
English, P for primary language ie. Gujarati, Tamil or Telugu.

hyp \ ref SIL CS P

SIL 14,097 (69.7%) 248 ( 1.9%) 1,797 ( 2.5%)
CS 445 ( 2.2%) 3,016 (22.6%) 2,885 ( 4.0%)
P 5,675 (28.1%) 10,068 (75.5%) 68,089 (93.5%)

tems. In general, both the phonotactic and i-vector acoustic
modeling obtained comparable performances, and a simple lin-
ear combination brought a further improvement showing their
complementarity.

For the utterance-level detection task, an F-measure of
about 80% was obtained. Compared to the provided base-
line system with a 74% accuracy average across the three lan-
guages, our combined system had an 83.3% accuracy on the
development data. Seen conversely, the error rate was reduced
from 26% to 16.7%. On the evaluation set, its performance
was lower, 76.0%, caused by a distribution shift of the i-vector
scores for one of the language pairs. The phonotactic scores
were less affected by this distribution mismatch and the phono-
tactic modeling appears to be more robust than the i-vector ap-
proach.

For the frame-level annotation task, the accuracy appears to
be of the same order of magnitude, with an average of 81.2% on
the development set and 78.7% on the evaluation set. However,
a detailed analysis revealed a very high rejection of the code-
switched frames, which amount to only 12% of the corpus. This
shows that a more precise modeling of the code-switched seg-
ments is needed for an accurate segmentation. For this aim,
following metrics more specifically fitted to the code-switching
detection task as e.g. the ones proposed by Guzman et al. [35],
would certainly be beneficial.
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Figure 3: Task B: histogram of code-switched segments as a
function of their duration (left) and accuracy in code-switching
frame detection in a equiprobable setting (right), cumulated
over all languages for the combined system on the dev set.
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