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Abstract

Wearing an oxygen mask changes the speech production of
speakers. It indeed modifies the vocal apparatus and perturbs
the articulatory movements of the speaker. This paper studies
the impact of the oxygen mask of military aircraft pilots on for-
mant trajectories, both dynamically (variations of the formants
at a utterance level) and globally (mean value at the utterance
level) for 12 speakers.

A comparative analysis of speech collected with and with-
out an oxygen mask shows that the mask has a significant im-
pact on the formant trajectories, both on the mean values and
on the formant variations at the utterance level. This impact is
strongly dependent on the speaker and also on the mask model.
These observations suggest that the articulatory movements of
the speaker are modified by the presence of the mask.

These observations are validated via a preliminary ASR ex-
periment that uses a data augmentation technique based on ar-
ticulatory perturbations that are driven by our experimental ob-
servations.

Index Terms: speech variation, articulatory perturbation, oxy-
gen mask, data augmentation

1. Introduction

The speech production of military aircraft pilots is affected by
various environmental factors, such as loud noise and its subse-
quential effect, the Lombard speech [1, 2], strong acceleration
(g-force) [3, 4, 5], the wearing of an oxygen mask [6, 7], and
intense psychological workloads [8, 9].

Among these factors, the effect of wearing an oxygen mask
has received attention since the 80’s. Wearing an oxygen mask
affects the speech production, since it modifies the vocal appa-
ratus and perturbs the articulatory movements of the speaker.
The vocal tract configuration is modified as it is closed by
a chamber between the mask wall and the speaker’s mouth.
Speakers have reported [3] that the presence of the mask hinders
their lips and jaw articulatory movements, which could result in
a smaller mouth opening, or a limited lip protrusion [5]. It also
increases the breath noise and adds various acoustical noises
(e.g. respiratory valves, microphone artifacts). Bond et al. [6]
analyzed acoustic-phonetic characteristics of speech wearing a
mask and found that the overall effect of the oxygen mask is to
compress the F'1 — F'2 vowel space. For other phonetic char-
acteristics, such as fundamental frequency, and phoneme du-
ration, wearing a mask had only a marginal influence. Other
studies have investigated the impact of cognitive workloads on
aircraft pilots and, consequently, analyzed speech of speakers
wearing an oxygen mask. Kerénen et al. [8] reported that the av-
erage fundamental frequency is raised by about 20% relative in
anoisy condition. Huttunen et al. [9] found additional formants
at around 300 Hz and between 2500 and 3000 Hz. Using nu-
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merical simulations of the transfer functions of the vocal tract to
which an additional cavity is connected downstream, Vojnovié
et al. [10] associated the additional formant at 3000 Hz to the
acoustic resonance of the mask cavity. They also observed a
slight rise of the vocal tract resonances by at most 5%.

All of these speech modifications drastically degrade the
performance of automatic speech recognition (ASR) systems
when the speaker wears an oxygen mask [11]. Using recent
speech recognition systems trained with normal speech [12, 13,
14], the Word Error Rate (WER) obtained for speech with the
oxygen mask doubles in comparison to that of normal speech
from the same speaker. In order to build accurate ASR mod-
els for military aircraft pilots, the speech variations needs to be
clearly identified and quantified. One difficulty of the automatic
recognition of military pilot’s speech is the lack of available
data (e.g. because of confidentiality issues). A possible solution
could consist in artificially generating data by transforming nor-
mal speech so that it reflects the acoustic parameters of speech
of military aircraft pilots. This approach can complement data
augmentation techniques [15], such as the Vocal Tract Length
Perturbation (VTLP) [16, 17], which is commonly applied to
generate new data by virtually modifying the length of the vo-
cal tract. Although this technique works well for generic tasks,
we believe that it needs to be adapted to generate new data that
fits the speech corresponding to that of the recognition task con-
sidered in this work.

For that purpose, this paper focuses on the analysis of the
dynamic speech variations with an oxygen mask, with the aim
of building transformation operators that can be applied to nor-
mal speech so that the transformed speech signal resembles that
of speech with an oxygen mask. Acoustic variations of speech
are analyzed at the utterance level with a focus on the articu-
latory perturbations due to the presence of the mask by com-
paring the same sentences pronounced by the same speakers
both with and without the mask. The experimental study ana-
lyzes the global and local variations of formant trajectories in
speech from 12 speakers. In comparison to previous studies
(e.g. [3]), variations of formant values are analyzed both dy-
namically (variations of the formants at a utterance level) and
globally (mean value at the utterance level). Additionally, in-
dividual variations of speech across speakers are analyzed. In
order to validate our model, preliminary ASR experiments are
carried out using an articulatory-based perturbation technique
for data augmentation, where the articulatory perturbations are
driven by our experimental observations.

The organization of this paper is as follows. Section 2 de-
scribes the experimental observation of the speech variations
with an oxygen mask, including the subjects, the analysis meth-
ods, and the presentation of the results. Section 4 presents the
ASR experiments using an articulatory-based data augmenta-
tion technique to improve the performance of ASR tasks on
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speech with an oxygen mask.

2. Speech corpora

This section describes the corpora used for the two parts of the
paper: the experimental analysis of the effect of the oxygen
mask on speech characteristics and the preliminary ASR exper-
iment. The corpus used for the analysis of speech variations is
designed to be easy to utter: a dozen of syllables per sentence
and all sentences are in the native language of the speakers (i.e.
French) with a close to standard phraseology. The corpus for the
ASR experiments was designed to target pilot’s speech, namely
with the specific Air Traffic Control and military aviation gram-
mar phraseology.

2.1. Corpus used for the analysis of speech variations

Data were collected in two recording sessions. The first one
includes 8 subjects, 7 male speakers (BE, CB, JD, MCB, MV,
PYL, and WB), and 1 female speaker (JG). The second one in-
cludes 6 subjects, 2 male speakers (BE and MS), and 4 female
speakers (JG, FSA, FSB, and FSC). Speakers BE and JG partic-
ipated in both sessions. All 12 subjects are French native adult
speakers with no known speech disorder or hearing impairment.

The text corpus used for both recording sessions consists
of 50 sentences taken from the Combescure corpus [18]. This
corpus is a well know reference for linguistic studies and was
specifically designed to reproduce all French phonemes with
individual recurrence rates similar to those encountered in spo-
ken French. The choice of this corpus was also motivated by
the fact that the sentences are short enough to limit pronuncia-
tion errors and respiratory pauses when using the oxygen mask,
while being long enough to observe the acoustic effects of the
articulatory gestures. The shortest sentence has 8 syllables and
the longest 18.

Recordings were made in a quiet environment. The no-
mask recordings were acquired with a dynamic headset micro-
phone and using the capsule of a dynamic microphone mounted
in the oxygen mask for the mask recordings. Data were sam-
pled at the rate of 8 kHz for the post-processing. Two kinds of
oxygen masks were used for the experiment. The first one (de-
noted M1) is a Ulmer 82AB and the second one (denoted M2)
is a Ulmer UA21S.

2.2. Corpus used for the ASR experiment

Since the aim of the prelimary ASR experiment is to validate
the proposed approach, a small, task-specific system was con-
structed. The training data come from two corpora in English
totaling 15.7 hours of speech: (1) Air Traffic Control (ATC) data
(2) recordings of read speech using the official military aircraft
phraseology. The ATC corpus contains 7000 utterances with a
total duration of 8.1 hours and the phraseology corpus contains
7628 utterances with a total duration of 7.6 hours.

The test corpus is a set of 385 sentences with a mix of of-
ficial military aircraft phraseology and sentences inspired from
real flight missions. All sentences were uttered by 4 different
speakers with an oxygen mask in quiet conditions, for at total
duration of 18 minutes.

3. Analysis of speech variations

Formant trajectories were extracted from audio recordings us-
ing the Parselmouth library [19], which is a Python interface to
access Praat functionalities [20]. From the trajectories of the
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first three formants at the utterance level, two parameters were
computed for each individual trajectory: the median formant F'i
and the formant span S4.

The formant span computation is an adaptation of the
method initially proposed by Jany-Luig [21] for pitch contours,
but applied to formant trajectories. It is based on previous work
by Patterson and Ladd [22], in which the authors proposed to
use clear pitch marks (maximums and minimums of the pitch
contour) to compute the pitch span. Then, the authors defined
the pitch span as the difference between the average distance
between the maximums and the local mean contour and the av-
erage distance between the minimums and the local mean con-
tour. By applying this method to the formant trajectories, it is
possible to get a feature that measures the range of articulatory
movements produced by the subject: for a given utterance, the
lower the formant span, the smaller the articulatory gesture. The
median formant is defined as the median value of an individual
formant across the whole utterance.

For each parameter, we computed a normalized value,
named the R-index, defined as the value for a given sentence
uttered with the oxygen mask normalized by the value of the
same sentence uttered by the same speaker without the mask.
Hence a value larger than 1 means that this parameter is raised
in the mask condition, and a value smaller than 1 means that it
has been reduced. We also performed a one-way ANOVA on the
two groups of data (without and with a mask) to assess the sig-
nificance of the effect of the mask for each parameter. Another
one-way ANOVA is performed for the relative data considering
each speaker-session as a separate group.

Results are presented for each subject and experimental ses-
sion. The label indicates the following information: subject’s
initials, session number (1 or 2), gender (M or F), mask number
(1 or 2). For instance, BEIM1 means that the data corresponds
to subject BE, recorded in the first experimental session, the
subject is male and wearing the mask M1.

3.1. Median formant

Table 1: Median values of Rr; for the first three formants for
each recording session. Numbers in brackets are the standard
variations. Scores in blue font are less than 1. Scores followed
by * are statistically significant with p < 107>,

H Rr [ Rpo [ Rps

BEIM1 1.05 (0.06) [ 0.98(0.06) | 0.95(0.05)
BE2M2 0.88 (0.04)" | 0.92(0.07)" | 0.87 (0.03)"
CBIMI 1.07 (0.06)" | 0.99 (0.06) | 0.98 (0.03)
FSA2F1 1.14 (0.06)" | 1.04 (0.08) | 0.94 (0.04)"
FSB2F1 1.27 (0.13)" | 1.03 (0.08) | 0.94 (0.05)"
FSC2F1 1.26 (0.11)" | 1.09 (0.10)" | 0.92 (0.05)"
JDIMI 1.04 (0.08) | 0.97 (0.11) | 1.03 (0.06)
JGIF1 0.96 (0.07) | 0.83(0.08)" | 0.94 (0.04)"
JG2F2 0.85 (0.08)" | 0.79 (0.07)" | 0.91 (0.03)"
MCBIM1 || 0.98(0.11) | 0.96(0.09) | 0.98 (0.03)
MS2M2 0.94 (0.07) | 0.89(0.07)" | 0.90 (0.03)"
MVIMI 1.00 (0.08) | 0.91(0.11) | 0.98 (0.05)
PYLIMI 1.03 (0.08) | 0.90 (0.08)" | 0.96 (0.05)
WBI1M1 0.93 (0.07)" | 0.78 (0.16)" | 1.04 (0.04)"
all speakers || 1.00 (0.15) | 0.94 (0.12)" | 0.94 (0.06)"

Table 1 displays the values of Rr;, i.e. the relative modifi-
cations of the median formant frequency in the mask condition



compared to the no-mask condition, for the first three formants
F'1, F2, and F'3. It shows a large cross-speaker variability, with
no clear general tendency across speakers. For instance, some
speakers raise the first formant F'1 (BE with mask M1, CB,
FSA, FSB and FSC), while it is lowered for others (BE with
mask M2, JG with mask M2, and WB1). The modification may
be large : values range from —15% upto +26%. Grouping the
data from all speakers leads to a median variation of —0.25%
(p = 0.66). The results for BE and JG show that there is a
combined effect of the type of mask and its placement on the
speaker: BE raises F'1 with M1 but lowers it with M2, and the
lowering of F'2 for JG is much larger with M2 (—15%) than
with M1 (—4%).

The second formant F'2 shows less variation than F'1 across
speakers. Globally, speakers tend to lower F'2, with a median
variation of —6% across all speakers. The decrease is almost
—20% for JG with mask M2. However, the presence of the
oxygen mask has no effect on the F'2 for some speakers (BE
for mask M1, CB, FSA, FSB, and JD), and for one speaker,
FSC, F'2 raises with a median value of +9%.

The results for the third formant F'3 are similar to those ob-
served for F'2: there is a global tendency for speakers to lower
F3. The median variation across speakers is —6.2%. The me-
dian value of Rr3 of individual speakers is generally between
—5% and —15%.

Overall it can be seen that the formant values are highly
impacted by the presence of the oxygen mask. While there is
no clear tendency for F'1, which can be either raised or lowered,
depending on the speaker, F'2 and F'3 are usually lowered by
usually less than 20%.

3.2. Formant span

The relative modifications of the formant span, analyzed
through Rs; are displayed in Table 2. It shows that the me-
dian value of Rg; is less than 1 for most speakers. The median
ratio across all speakers is 0.73, which corresponds to a lower-
ing of about 27%. The minimal median R-index for the S1 is
—55% for WB. Only speaker MS has an Rg1 mostly larger than
1. Since F'1 is commonly associated with the jaw and lip move-
ments, this suggests that the speakers tend to decrease their jaw
movements when wearing an oxygen mask. This is in agree-
ment with remarks made by pilots that have been reported in
previous studies [3, 5].

The median value of Rg1 across all speakers is —4%, with
p = 0.54. However, a large cross-speaker variability is ob-
served. Indeed S2 is raised significantly for CB, JG with mask
M1, MCB, MV, and WB. On the contrary, it is significantly
reduced for speakers BE and JG, both with mask M2, FSA,
FSB, and FSC. There is no significant impact for other speakers
(p > 0.1). Since, the second formant frequency is commonly
associated with the tongue position, one hypothesis could be an
articulatory compensation, but further experiments should be
carried out to validate it.

Finally, Rss also varies significantly according to the
speaker. Across all speakers, the median value is +0.99%
(p = 0.001), but it is significantly increased for speakers BE,
MCB, MS, MV, and PYL, with median values going from
+18.7% to +49.0% (p < 0.007), and decreased for speak-
ers FSA, FSB, FSC, and WB, with median values going from
—68.4% to —27.0%.
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Table 2: Median values of Rs; for the first three formants for
each recording session. Numbers in brackets are the standard
variations. Scores in blue font are less than 1. Scores followed
by * are statistically significant with p < 1075,

I Rs1 [ Rso2 [ Rss

BEIM1 0.72(021)" | 1.12(0.43) | 1.32(0.48)
BE2M2 0.66 (0.19)" | 0.77 (0.27)" | 1.19 (0.46)
CB1M1 0.82(0.33) | 1.25(0.30) | 1.02(0.27)
FSA2F1 0.72 (0.19)" | 0.73 (0.17)" | 0.66 (0.14)"
FSB2F1 0.94 (0.36) | 0.76 (0.16)" | 0.44 (0.13)"
FSC2F1 0.78 (0.26) | 0.54 (0.14)" | 0.32 (0.11)"
JDIMI 0.73(0.22) | 1.04(0.44) | 0.84 (0.57)
JG1F1 0.67 (0.28)" | 1.48 (0.51)" | 0.97 (0.32)
JG2F2 0.89 (0.35) | 0.71(0.32)" | 1.01 (0.29)
MCB1M1 0.49 (0.24)" | 1.36 (0.54)" | 1.25(0.45)
MS2M2 1.31 (0.50)" | 0.99 (0.32) | 1.49 (0.47)"
MVIM1 0.73 (0.31)" | 1.31 (0.41)" | 1.27 (0.34)
PYLIMI 0.70 (0.29)° | 1.09 (0.41) | 1.37 (0.38)"
WBIMI 0.45(0.22)" | 1.73 (0.50)" | 0.73 (0.21)"
all speakers || 0.73 (0.36)" | 0.98 (0.49) 1.01 (0.49)

4. Articulatory-based perturbations for
data augmentation

This section presents some preliminary speech recognition ex-
periments using an articulatory-based data augmentation tech-
nique. These experiments make use of task-specific data for
model training and an independent test corpus. The data aug-
mentation technique is based on articulatory perturbations that
model the effect of the oxygen mask on the formant trajectories
that were presented in Section 3.

4.1. Articulatory perturbations

From the data presented in Section 3, it is possible to extract
(non-parametric) probability density functions for each formant
parameter and each subject. Then, for any utterance in the
initial dataset, a new value of the formant parameters is ran-
domly chosen from the associated probability density function,
and data augmentation is performed by applying the appropriate
transformations to the formant trajectories. Changing the for-
mant median value F; by a random value o is associated with
a translation, namely I} = «;F;. Scaling the formant span
by a random value (;, requires applying a detrending operator
L(F;), which consists of subtracting the falling or rising line
of declination of the formant trajectory F; and subsequently
centering it around zero by subtracting the mean. The inverse
operation is then denoted £~ (F;). The new formant trajectory
isthen F} = £ [8;L(F,)).

Finally, each windowed signal frame x.,(t) of the audio
speech signal is transformed using a piecewise linear frequency
warping function on the spectral envelope. The transformation
acts such that the peaks of the intial spectral envelope corre-
sponding to the initial formant frequencies F; match the target
formant frequencies F;. The new signal frame x/, (¢) is then

- Ca ()]
st =7 | x| G

1C.(f)]
where X, (f) F [zw(t)] is the Fourier transform of the
windowed signal frame ., (t), the operator F ' is the inverse
Fourier transform, C(f) is the cepstrum-based spectral enve-
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lope of z,(t), and Cy(f') is the frequency-warped version of
Cy(f). Figure 1 illustrates the transformation on the formant
trajectories and the piecewise linear frequency warping func-
tion applied to the spectral envelope.

Audio transformations were performed using the articula-
tory [l)erturbations application of the SpeechHiker Python li-
brary .
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Figure 1: Example transformations applied to the formant tra-
Jectories and the piecewise linear frequency warping function
applied to the spectral envelope. Left: transformation factors o
and (8 are randomly generated following a probability density
function computed from our statistical observations (here Rs,
for all speakers). Center : the initial formant trajectories for
F1, F2, and F'3, and the trajectories resulting from the trans-
formation factors of « [1.2,0.8,1] and B = [0.4,1,1.6].
Right: piecewise linear frequency frequency warping function
at the time frame represented by the dashed vertical line in the
left plot.

4.2. Preliminary speech recognition experiments

Table 1 gives the word error rate (WER) obtained on the
test data using a speech recognizer [14] relying on a HMM-
TDNN [23] acoustic model and a standard 3-gram language
model. The baseline training result is reported in the first row
of the table, followed by the result using a classical vocal tract
length perturbation (VTLP) data augmentation method, and us-
ing the proposed articulatory perturbation method based on the
statistical distribution of the articulatory variations taken across
all speakers. Since we are making use of a non-deterministic
NN training process, all models have been trained five times
and the WERs averaged.

Table 3: WER obtained on the test data with ASR models trained
with normal speech (baseline), adding VTLP-based augmented
data (+VTLP), and adding the data augmented using our artic-
ulatory perturbation technique following the statistical distri-
bution obtained from all speakers (+AP(all speakers)).

Training || #hours | mean WER (%)
Baseline 15.7 25.7
+VTLP 314 21.6
+AP(all speakers) 314 20.0

The models trained with the augmented corpus are seen
to outperform the baseline models. The best performance is
obtained using our novel articulatory-based augmentation tech-
nique. The WER is reduced by over 20% (max is 22%) from
the baseline value (20.0% vs. 25.7% ). The articulatory-based
augmentation technique also outperforms the VTLP-based aug-
mentation technique, which reduces the WER by 16% from the
baseline.

"https://gitlab.com/benjamin.elie/spychhiker
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5. Discussion and conclusions

This paper has presented a study about the variations of speech
production when wearing a military aircraft oxygen mask. It
consists of a comparative experimental study that analyzes the
impact of the oxygen mask on articulatory features extracted
from real speech recordings. Our experiments reported large
cross-speaker variability for these features that have not been
reported in previous studies [3, 9]. Given the hypothesis that
the mask perturbs the articulatory movements of the speakers,
the cross-speaker variability can be explained by several factors
such as the speaker physiology and the fit and degree of mask
tightening. Despite the large variability, the experiments high-
light global tendencies.

The formant trajectories are significantly impacted by the
presence of the oxygen mask. Indeed, compared to normal
speech, the speakers’ mean formant frequencies are modified.
For F'1, speakers either increase or decrease the mean formant
frequency, from —15% upto +26%. F'2 and F'3 are generally
reduced by 20% and 15%, respectively. The global shape of
the formant trajectories is also modified by the presence of the
oxygen mask. The most significant variation lies in F'1, for
which our experiments show an important reduction of the vari-
ations of the trajectory around the mean value. This reduction
of the formant span is between 20% and 40% among speak-
ers, compared to the formant span observed in normal speech.
These results support the hypothesis of articulatory perturba-
tions due to the presence of the mask, especially for the jaw and
the lips, which are commonly associated with F'1 variations.
This hypothesis is also supported by the fact that previous stud-
ies showed that adding a cavity downstream the vocal tract has
only a minor influence on formants [24, 10, 25].

This paper also presented a preliminary ASR study which
uses an articulatory-based data augmentation technique to train
models with data that reflect the aforementioned observed
acoustic variations. This data augmentation technique extends
the VTLP technique by a piecewise linear frequency warping
function applied to the spectral envelope that enables each for-
mant to be modified independently at each time frame. Thus,
it is possible to change the formant trajectories of the original
speech so that they correspond to typical formant trajectories
observed in speech recorded wearing an oxygen mask. These
preliminary ASR results validate our proposed method: in com-
parison with models trained with the original speech data, the
WER of the test data is reduced when using models trained with
the articulatory-based augmented data. This shows that specific
ASR tasks can benefit from adapted data augmentation tech-
niques.

In this paper, we only focused on articulatory perturbations
because they are likely the most significant factor explaining
the acoustic variations of speech with an oxygen mask. How-
ever, other factors that may be taken into account in future work
include microphone effects and prosodic variations due to cog-
nitive workloads [8, 9].
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