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Abstract

This paper presents initial work in transcribing conversa-
tional telephone speech in Russian. Acoustic seed mod-
els were derived from other languages. The initial stud-
ies are carried out with 9 hours of transcribed data, and
explore the choice of the phone set and use of other data
types to improve transcription performance. Discriminant
features produced by a Multi Layer Perceptron trained on
a few hours of Russian conversational data are contrasted
with those derived from well-trained networks for English
telephone speech and from Russian broadcast data. Acous-
tic models trained on broadcast data filtered to match the
telephone band achieve results comparable to those obtained
with models trained on the small conversation telephone
speech corpus.

1 Introduction

This paper reports on recent research aimed at developing a
speech-to-text transcription (STT) system for conversational
telephone speech (CTS) for the Russian language. A survey
of Russian speech recognition systems can be found in [1].
Traditionally STT systems are trained on large amounts
of carefully transcribed speech data and huge quantities of
written texts. However obtaining the needed transcribed au-
dio data remains quite costly and requires substantial su-
pervision. This is particularly onerous for conversational
speech where the collect and transcription are much more
complicated and time consuming than for broadcast data.
Several research directions have addressed reducing these
costs [2] and there has been growing interest in producing
and training with audio data that are associated with quick
transcriptions [3]. It is possible to find associated texts for
some audio sources, this type of data is not very close to
conversational speech. A variety of lightly and unsupervised
acoustic model approaches have been proposed, most rely-
ing on supervision from a language model. The approaches
differ in their details: use or not of confidence factors [4]
or [5], [6], doubling vs iterative training [7] and the amount
of data used. Collecting text from the Web was used by [8]
to improve STT performance on conversational telephone
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speech in Mandarin and English.

In the context of the Quaero program (www.quaero.
org), LIMSI and Vocapia Research developed a speech-to-
text transcription systems for broadcast data in Russian [9].
Since only a 9-hour corpus of transcribed Russian conversa-
tional data was available for this work, some initial exper-
iments were carried out using broadcast audio for acoustic
model training.

The next section gives an overview of the characteris-
tics of the Russian language, followed by a description the
speech transcription system, and the corpora used in this
study. This is followed by a description of the language
models, the phone set and acoustic models, after which ex-
perimental results are provided.

2 Russian Language

Russian language belongs to Indoeuropean family, Slavic
group, East Slavic branch and is written with a modern vari-
ant of the Cyrillic alphabet. Nouns, proper names, adjec-
tives, pronouns, numerals and participles are subject to de-
clension in six cases, two numbers and three genders. All of
these can be stacked one upon the other, to produce multiple
derivatives of a given word. Agglutinative compounds are
also very frequent, over the last century, abbreviated forms
are being used for some compounds.

According to www.internetworldstats.com, as
of May 2011 Russian is the 9th most frequently used lan-
guage on the Internet. With almost 60 million users, Russian
users represent only 3% of the worldwide Internet users, but
has had one of the fastest growth rates over the last decade.

The Russian pronunciation is almost phonetic, mean-
ing that there is relatively straightforward correspondence
between letters and sounds. Consonants are divided into
palatalized (soft, also called ’wet’) and non-palatalized
(hard) ones. Stress is free and moving, it can fall on any
syllable of the word and on different syllables of the word.
The lack of stress information poses a challenge for pronun-
ciation generation, since the stress position can modify the
vowel pronunciation. Word order in Russian is free, and by
changing the word order any word in a sentence can be em-
phasized.



3 Speech Recognizer Overview

The LIMSI conversational speech transcription system has
two main components, an audio partitioner and a word rec-
ognizer. As described in [10], the conversational speech
system was originally derived from a broadcast news sys-
tem [11]. The word recognizer uses continuous density
HMMs with Gaussian mixture for acoustic modeling and
n-gram statistics estimated on large text corpora for lan-
guage modeling. The audio partitioner uses an audio stream
mixture model [12] to divide the acoustic signal into homo-
geneous segments, and associate appropriate speaker labels
with the segments. Non-speech segments are detected and
rejected using Gaussian mixture models representing speech
and silence, after which an iterative maximum likelihood
segmentation/clustering procedure is applied to the speech
segments. The result of the procedure is a sequence of non-
overlapping segments with their associated segment cluster
labels, where each segment cluster represents one speaker.

Word recognition is performed in a single pass,
which generates a word lattice with cross-word, position-
dependent, gender-dependent acoustic models. This is fol-
lowed by a lattice decoding using a 4-gram language model.
Unsupervised acoustic model adaptation is performed for
each segment cluster prior to decoding. The acoustic model
adaptation relies on a tree organization of the phone model
states to automatically create adaptation classes as a func-
tion of the available data.

4 Corpus

About 9 hours of Russian conversational telephone speech
(cTS) data were available for this study. These were split
into training and development sets. The training set is com-
prised of 44 conversations, with durations ranging from 2
minutes to 30 minutes, for an average length of about 11
minutes. 81% of the data is from female speakers, with 19%
from male speakers. There are a total of about 69k words
in the training set. About 1 hour of data was reserved for
development purposes. The development data is comprised
of 7 conversation sides, with 89%/11% female/male repar-
tition and a total of 9.5k words. The training data consist
of 2-channel telephone recordings, and the audio quality is
quite varied, with some distortion for some recordings, but
not much crosstalk.

5 Phone Sets & Pronunciations

Tables 1 and 2 show respectively the set of vowels and con-
sonants used in the pronunciation lexicon and the acoustic
models. The first phone set contained 51 elements, as used
in the BN Russian systems. This included 35 consonants, 13
vowels and 3 non-speech units for breath, fillers and silence.
As shown in Table 3, four contrastive phone sets were inves-
tigated. In addition to the 51 phone set, one removes the 5

Table 1: Russian vowels and other symbols. The highlighted
boxes show the 4 generic vowels added to form the 50 and
55 phone sets.

] vowels \
IPA phoneme example
a a aanba
e e aBrycre
i i aBI'UEBBIX
) o ayamo
u u aBrycre
ia a aBCTPUSI
ig e aBr'UEeBbIX
i i aBCTpUN
Jo 0 E2KUK
iu u aBCTPHUIO
9 [1) aBI'yCTOBCKUE
e A o0J1aro1apuB
j y aBI'YCTOBCKUI
generic vowels other symbols
phoneme | represents | phoneme | example
. silence
& filler
- ® breath
2igd

soft consonants which are relatively rare in the CTS data and
a second introduces 4 generic vowels to address the chal-
lenge of pronunciation generation with uncertain stress. In
this case a single generic vowel is used to represent several
possible phone realisations. The final 55 phone set contain-
ing both the soft consonants and the generic vowels was not
used in the initial experiments.

The pronunciation lexicons for each of the phone sets
were created principally using grapheme-to-phoneme con-
version rules since as mentioned earlier this is relatively
straightforward for the Russian language. Some pronunci-
ations were obtained from the Master dictionary developed
for the Quaero broadcast data STT system. For the 46 and
51 phone sets, a morphological analyzer [13] for the Rus-
sian language was modified to return the stress for a word
in context. Using this information, the appropriate lexical-
stress dependent phonetization can be generated taking into
account vowel reduction. Using the rules summarized in
Table 5 (after [14]), it is possible to model the vowel reduc-
tion affecting the vowels /aciou/. Depending upon the stress,
these can be mapped to one of their counterparts vowels
/oeie/. These rules can generate multiple pronunciations for
a word, resulting in an average of 1.6 pronunciations/word
for the 46 and 51 phone lexicons. Since the 50 and 55 phone
sets use the generic vowel, they have essentially only one
pronunciation/word.



Table 2: Russian consonants. The highlighted boxes show the 5 infrequent soft consonants removed to form the 46 and 51

phone sets.
] hard consonants \ soft consonants |

IPA | phoneme example IPA | phoneme example
b b aapba b B aficbepr
d d aJI0BBI d D aHIEepC
f f aBI'yCTOBCKHE . . -
g g ABI'UeBbBIX . |anTen
k k aBTyCTOBCKHE . _
1 1 anu A L aJIeKc
m m aBI'yCTOBCKHM | mY M aTome
n n aJpecHoit o N aftre
p P AJIBIIBI P P orepa
r r aBCTpHUU r R aBTOpE
S S aBrycre s S aftpece
t t aBI'yCTOBCKIE t T aBrycre
\Y v ABIUEBBIX V) A" aBTOPCTBE
x| ox avrmenerx | B0 | B | e
cl e | e (B @ |
ts § akmuei tfj ¢ aJIYHOCTD
) ¢ AHIILTIOCA, P C ATOMIIUKH

3 J yIKac

6 Acoustic Modeling

Two sets of acoustic features were used in this work. The
first are PLP-like [15] features and second are probabilistic
features produced by Multi Layer Perceptron (MLP) [16].
Previous experiments with alternate MLP features have
shown that the TRAP-DCT features [17] have comparable
performance to the warped linear predictive temporal pat-
terns (WLP) but are much cheaper to obtain.

For the PLP features, 39 cepstral parameters are derived
from a Mel frequency spectrum, with cepstral mean removal
and variance normalization carried out on a segment-cluster
basis, resulting in a zero mean and unity variance for each
cepstral coefficient [11]. The TRAP-DCT features are ob-
tained from a 19-band Bark scale spectrogram, using a 30
ms window and a 10 ms offset. A discrete cosine trans-
form (DCT) is applied to each band (the first 25 DCT coeffi-
cients are kept) resulting in 475 raw features, features which
are the input to a 4-layer MLP with the bottleneck architec-
ture [18]. The size of the third layer (the bottleneck) is equal
to the desired number of features (39). A 3-dimensional
pitch feature vector (pitch, A and AA pitch) is combined
with the other features, resulting in a total of 42 (plpf0) or
81 parameters (mlpplpf0).

Features derived from three different MLP networks were
used. The first that was trained on over 2000 hours of con-
versational telephone speech for US English. The second
was trained on Russian broadcast data that was filtered to
match the telephone bandwidth (Ru BNy;). The third was

Table 3: Different Russian phone sets investigated.

[ #phones | 46 [ 51 [ 50 [ 55 ]
30 consonants X X X X
5 soft (wet) consonants X X
13 vowels X X X X
4 generic vowels X | X
3 non-speech symbols X | x| x| X

Table 4: MLP cross-validation frame accuracies.
| Languages | #MLP targets | CV Accuracy |

US cTS 108 48.09 %
Ru BN, 147 45.07%
Ru CTS 144 47.81%

trained on the Russian CTS data. All networks were trained
using the scheme proposed in [19], reserving a portion of
the data for cross-validation to monitor performance (shown
in Table 4. The MLP targets, correspond to the individual
states for each phone and one state for each of the pseudo
phones (silence, breath, filler).

As in [11] the acoustic models are tied-state, left-to-right
3-state HMMs with Gaussian mixture observation densities
(typically 32 components). The triphone-based phone mod-
els are word independent, but word position-dependent. The



Table 5: Vowel reduction rules after [14].

initial other first stress post-

pre-stress | pre-stress stress
a, o after hard consonant /a/ fo/ lel /a/ or /o/ fol

except Post alveolar
dq, e after sweet 0] fol /il or /e/ /al or /e/ [0}
consonant
a,e,o0 after hard @ i/ or /of /el or /il | /al or/e/or /ol | [of or i/
Post alveolar

states are tied by means of a decision tree to reduce model
size and increase triphone coverage. State-tying constructs
one tree for each state of each phone so as to maximize the
likelihood of the training data using single Gaussian state
models, penalized by the number of tied-states. Silence is
modeled by a single state with 1024 Gaussians.

The most frequent phone contexts in the training data
are modeled, with separate cross-word and word-internal
statistics. Gender-dependent acoustic models were built us-
ing MAP adaptation of the gender-independent models [20].
Depending upon the number of phones, the acoustic mod-
els cover between 6000 to 6380 phone contexts with about
2600 tied states. The sets of questions used by the divi-
sive tree based clustering algorithm concern the phone po-
sition, the distinctive features (and identities) of the phone
and the neighboring phones. Depending upon the phone set,
the number of questions ranges from 73 to 92.

7 Language Modeling

The methods used for text normalization and vocabulary
section for broadcast data were applied. Basic normaliza-
tion rules were applied to the Russian texts extracted from
the HTML web pages. In Russian, like in other languages,
abbreviations are common. These abbreviations were re-
placed by their expanded forms. Foreign words in Russian
texts (which appear mainly newspaper articles) can be writ-
ten with Latin or Cyrillic characters. It was decided to re-
move all the Latin words since none of them were observed
in the CTS transcriptions used for this experiment. Cyril-
lic words that are completely written with uppercase letters
were processed as acronyms.

Regular expressions were used to detect numbers and cap-
ture their right and left contexts. Depending on these con-
texts, the numbers were classified into one of the following
categories: cardinal, ordinal, time, amount, phone number.
The category was used when converted the number in a spo-
ken form. Number declensions were not taken into account
at this stage of work, so each number is written in the mas-
culine nominative form.

After the punctuation was tokenized, the texts were for-
matted one sentence per line, and then the punctuation mark-
ers were removed. Only minor normalizations were applied

Table 6: Summary of the Russian text corpora used for lan-
guage model training.

| Source | Nature | Words | Vocabulary |
Texts Articles | 296.1M 1.8M
BN transcripts | 741K 74K
CTS transcripts 69K 8.9K
OpenSubtitles | subtitles 483K 53K
Total 297.3M 1.8M

Table 7: Characteristics of the component Russian language
models estimated on the subsets of the available training

texts.

| Source | PPX [ #4-grams | Interpol. coeff. |
Texts 2371.1 188M 0.22
BN transcripts | 3227.8 638K 0.02
CTS transcripts | 1246.0 60K 0.69
OpenSubtitles | 2715.5 325K 0.07

to the manual transcriptions of broadcast and CTS data.

Table 6 summarizes the text corpora used for LM train-
ing. These are grouped in 4 subsets. Most of the texts are
from written sources, and almost all of the audio transcripts
are from broadcast data with only 69k words of transcripts
of conversational telephone speech. The table specifies the
total number of words for each subcorpus and the number
of distinct words after normalization. There are almost 2M
distinct word forms. The 1h dev set has 9K words, and was
collected and transcribed in the same manner as the audio
training corpus.

The recognition vocabulary was selected by interpolation
of unigrams on the development data set to minimize the
OOV rate on this data by selecting the most probable words.
A set of 500K words was chosen that resulted in an OOV
rate of just under 3% on the development data set.

Individual models are built using the Kneser-Ney smooth-
ing algorithm and then interpolated. The interpolation coef-
ficient are chosen automatically using the EM algorithm and
targeting our development data set. Table 7 shows the char-
acteristics of these individual models. After interpolation
the resulting language model is pruned. The final interpo-



Table 8: Word error rate (%) using plpfO AMs trained on
only 8h of CTS data, with three different phone sets.
| phone sets | %WER |

46 GI 60.0
46 GD 58.9
51GD 59.0
50 GD 58.2

lated LM contains 19M 4-grams and results in a dev data
perplexity of 742.1.

8 Experimental results

To set a first baseline, the CTS development data were pro-
cessed with the 2010 Russian Quaero broadcast news mod-
els [9]. A case-insensitive word error rate of 84.3% was ob-
tained. The 51 phone set acoustic models from this system
are discriminatively trained on about 100 hours of predom-
inantly wideband broadcast audio data with transcripts, and
use the 81 parameter mlpplpfO feature vector. The language
models are estimated on about 300 million words of varied
texts and optimized for broadcast data. The word error rate
of this system on a mix of broadcast news and broadcast
conversation data used in the Quaero program is about 20%.

Table 8 summarizes a series of experiments carried out
with plpfO acoustic models with lexicons represented with
three of the phone sets from Table 3, and the last LM in
Table 9. As a reminder, the phone sets differ in as to
whether they include the infrequent soft consonants and/or
if they use generic vowels to cover the contextual, lexical
stress dependent realization of vowels. The first two en-
tries gives the WER using the smallest phone set with 43
phones and 3 non-speech units, using gender-independent
(GI) and gender-dependent (GD) acoustic models. Since the
GD models outperformed the GI ones all remaining results
make use of GD models. The third entry makes use of the
51 phone set which includes the 5 soft consonants. There
is essentially no change in performance, and since these
phones are rare in the CTS training data, it was decided to
not include them. The last entry uses the 4 generic vowel
models instead of trying to generate word stress-dependent
pronunciation variants via a morphological analysis. This
latter phone set gives a slight performance gain relative to
the other two sets. When pronunciation counts derived from
their appearance in the training data are used with 46 and
51 phone set models, the WER is reduced by about 0.4%
absolute.

Table 9 gives contrastive results in an effort to assess the
contribution of the different text corpora on system perfor-
mance. These experiments were carried out with plpfO mod-
els trained on the 8 hour corpus, using the 50 phone set. A
WER of 61% is obtained using a language model trained
only on web texts, but targeting the dev data. Including ei-

Table 9: Comparing LMs trained on different text corpora
using Ru CTS 50 phone plpf0 models.

| Train corpus | %WER |
BN text 61.0
BN+BNtrans 59.9
BN-+subtitles 59.9
BN+BNtrans+sub 59.4
BN+BNtrans+sub+CTStrans 58.2

Table 10: Comparing acoustic models trained on Russian
CTS data with acoustic models trained on Quaero Russian
broadcast data, using different sets of MLP features derived
from Russian or US CTS data or Russian BN data filtered to
telephone band.

| AMtmn | features | MLP trn [ #phones | %WER |

plpfO - 50 58.2

mlpplpfO | RucCTS 50 50.7

CTS data | mlpplpfO | US CTS 50 51.2
8 hours | mlpplpfO | Ru BN, 50 51.0
plpfO - 51 59.0

mlpplpfO | RucCTS 51 52.0

mlpplpfO | US TS 51 52.7

mlpplpfO | Ru BNy, 51 51.7

Quaero plpf0 - 51 60.0
BN data | mlpplpfO | Ru BNy 51 51.6
195 hours | mlpplpf0 | Ru CTS 51 51.5

ther the BN transcripts or the OpenSubtitles results in the
same WER reduction, with an additional improvement us-
ing both. Even though the amount of CTS transcripts is quite
small, as can be expected these are an important LM com-
ponent.

Table 10 compares acoustic model training with three sets
of mlpplpf0 features, The upper part gives results with AMs
trained on CTS data, and the lower part AMs trained on BN
data filtered to match the telephone band. Since the BN sys-
tems use a 51 phone set results are also given for the CTS
trained models using the 51 phone set to have a more fair
comparison. A first observation is that the mlpplpfO mod-
els all significantly outperform plpfO models, independent
of which data were used to train the MLP network. While
the models trained on the CTS audio data using the Ru CTS
MLP features give the best performance, there is not a big
difference if the other MLP feature sets are used, and it is
slightly better to use the Ru BN;.,; MLP features than the
US cTs ones. The WER with the filtered Russian BN train-
ing date is 51.5% which is not that much worse than the best
result of 50.7% trained with only the Ru CTS data.

Unsupervised training: Given the high error rate of the
best model, and the lack of additional transcribed resources



first attempt to carry out acoustic model unsupervised train-
ing using the LDC RUSTEN corpus (LDC2006S34) was
unsuccessful- using the system with a WER of about 50%
to transcribe the 30 hours RUSTEN data and add it to
the acoustic training data (without any confidence filtering
as was done in [6] , or lattice-based training as proposed
by [21]), degraded the performance by about 1% absolute.

After the experiments reported here were carried out, we
obtained another 1 hour set of development data. This was
recorded and transcribed completely independently of the
first set. Although there was a loss on the first development
set, there small improvement was obtained on the new dev
data (from 62.0% to 59.0%), however the overall WER is
higher on the new dev suggesting that there is a mismatch
between the 3 data sources. Acoustic models with mlpplpfO
features, trained with the 50 and 55 phone sets, obtained
comparable performance on both dev sets.

Morphological decomposition: A very simplistic mor-
phological decomposition experiment was also carried out
in an attempt to reduce the recognition vocabulary size and
improve lexical coverage. This is much simpler than the
method proposed in [22]. To do so a list of 50 declension
suffixes was defined, and a single ending removed from the
word as long as the remainder has at least 5 characters. Al-
though the size of the recognition lexicon was reduced to
324k entries with a 20% reduction in OOVs, there was no
reduction in the WER.

9 Conclusions

This paper has described our initial work in developing a
speech-to-text transcription system for conversational Rus-
sian telephone speech data. Since only a small corpus of
transcribed Russian CTS data was available, attempts were
made to use other data sources. First attempts to use ad-
ditional Russian CTS audio in an unsupervised manner and
to use a simple morphological decomposition to reduce the
OOV rate were not successful. Training acoustic models
with broadcast data filtered to match the telephone band
resulted in a relative word error rate quite comparable to
that obtained with models trained on the CTS corpus. Dis-
criminative features obtained with multi-layer perceptions,
whether estimated on the CTS corpus or other available
sources (US CTS or Ru BNy;) when combined with plpfO
features gave significant improvements over the plpf0 fea-
tures alone.
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