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Abstract This work introduces a unified framework for
mono-, cross- and multi-modal person recognition in multi-
media data. Dubbed person instance graph models the per-
son recognition task as a graph mining problem: i.e., find-
ing the best mapping between person instance vertices and
identity vertices. Practically, we describe how the approach
can be applied to speaker identification in TV broadcast.
Then, a solution to the above-mentioned mapping problem
is proposed. It relies on integer linear programming to model
the problem of clustering person instances based on their
identity. We provide an in-depth theoretical definition of the
optimization problem. Moreover, we improve two funda-
mental aspects of our previous related work: the problem
constraints and the optimized objective function. Finally, a
thorough experimental evaluation of the proposed framework
is performed on a publicly available benchmark database.
Depending on the graph configuration (i.e., the choice of
its vertices and edges), we show that multiple tasks can be
addressed interchangeably (e.g., speaker diarization, super-
vised or unsupervised speaker identification), significantly
outperforming state-of-the-art mono-modal approaches.
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1 Introduction

Multi-modal and cross-modal information processing is an
essential human faculty which we depend on quite often. For
example, when visiting a new place, we match lexical infor-
mation in terms of place names on a map to visual scenes of
the actual places we are in, or to acoustic or speech infor-
mation in the form of directions provided by passersby. This
is part of a constant learning process where not only do we
simultaneously analyze information from multiple modali-
ties (multi-modal processing), but also use one modality to
help understand another one (cross-modal processing).

To some extent, modern information processing systems
already emulate this multi- or cross-modal processing capa-
bility. This includes systems which deal with automatic
content-based segmentation, annotation, summarization and
retrieval of multimodal content in the form of audio, video
and text [10,25,31,32,39,42].

In this paper, we study automatic annotation and retrieval
of multimedia data, specifically in the context of automatic
person identification in TV broadcast. Multiple sources of
information can be combined to achieve automatic person
identification, including the visual stream (e.g., face recog-
nition and overlaid name detection), the audio stream (e.g.,
speaker identification and speech transcription) and textual
metadata (e.g., electronic program guide and cast list). Auto-
matically recognized person identities can be very useful in
many higher level multimedia analysis tasks, such as seman-
tic indexing and retrieval, interaction analysis and video
summarization.
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Existing studies on person identification using cross-
modal analysis typically involve person names extracted
from the output of automatic speech recognition (ASR) [7,
13,24,28,41], from overlaid text in videos [6,36,37], or from
subtitles and transcripts aligned with automatically detected
face tracks [2,9].

Identifying speakers using pronounced names extracted
from the ASR output was first proposed in [7]. Names were
manually classified based on their lexical context to indicate
whether they refer to the speaker, the addressee or some-
one else. Tranter et al. [41] automatically learn these pat-
terns from n-gram sequences, while Mauclair et al. [28] used
a semantic classification tree to match names with speaker
turns. Esteve et al. [13] and Jousse et al. [24] further devel-
oped and analyzed this approach. These approaches differ
from our work in that they only rely on the audio stream to
identify speakers (while our work seamlessly extends from
audio-only to audio-visual processing). Hence, they are very
dependent on the quality of the ASR output as they can-
not rely on the visual stream to address this limitations. For
instance, [24] reports that error rates increase from 17 up
to 75 % when switching from manual to automatic speech
transcription.

More recently, three cross-modal methods were proposed
by Poignant et al. [37] to automatically propagate writ-
ten names (obtained from overlaid text using video opti-
cal character recognition) to speaker clusters. These cross-
modal unsupervised methods achieved better performance
than a mono-modal supervised speaker identification solu-
tion. However, the performance of name propagation is very
dependent on the quality of the initial speaker diarization
step—while our proposed framework achieves (and improves
both) speaker diarization and name propagation at the same
time. Hence, [37] reports that error rates increase from 23 up
to 33 % when switching from manual to automatic speaker
diarization.

Apart from naming speakers from spoken or written
names, another approachis to align TV series transcripts with
face tracks, and use this alignment to train character models
in a weakly supervised learning scenario [2,9]. Contrary to
our proposed framework that can achieve fully unsupervised
speaker identification, these approaches do rely on manual
(and potentially ambiguous) labels to train face models later
used for supervised identification.

To our knowledge, none of the existing works proposes a
unified framework for mono-, cross- or multi-modal person
identification in multimedia data. In this context, the main
contribution of this paper is the introduction of a generic
structure called person instance graph. Depending on its con-
figuration (i.e., the choice of its vertices and edges), it can
be used to model and outperform both existing mono- or
cross-modal approaches, as well as supervised or unsuper-
vised person recognition algorithms. Most of all, it has the
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potential to seamlessly combine all these variants into a uni-
versal multi-modal one. Section 2 details the graphical struc-
ture of the proposed framework and describes how it can be
setup in practice for speaker identification in TV broadcast.
For reference purposes, notations introduced in this section
and used in the rest of the paper are gathered in Table 1.

Section 3 details the proposed integer linear programming
solution that is used to mine person identity information from
person instance graphs. Although it is based on our previ-
ous work reported in [6], the current work brings several
major contributions with respect to that work. First, theoreti-
cal aspects are much more detailed than it was in [6]. Then, a
weighted extension of the objective function is introduced in
Sect. 3.2. Finally, Sect. 3.4 describes how (previously strict)
transitivity constraints can be relaxed to achieve better person
identification results.

Section 4 provides a detailed description of the experimen-
tal protocol, including the REPERE benchmark database [19]
and an in-depth definition of the evaluation metrics. Finally,
in Sect. 5, athorough experimental evaluation of the proposed
framework is reported on this benchmark database. Multiple
modalities are combined towards speaker identification—
including speech turns extracted from the acoustic signal,
spoken names obtained from speech transcription, and writ-
ten names given by video optical character recognition.
Two learning scenarios (unsupervised and supervised) and
two applications (speaker identification and diarization) are
studied.

Section 6 concludes this paper and highlights how the pro-
posed framework could be extended to various applications
of interest.

2 Building person instance graphs

A person instance graph is a weighted undirected graph G =
V., &, p) where V is the set of vertices, £ C V x V is the
set of edges, and p € [0, 11 associates a weight to every
edge.

Vertices V. Each vertex v € V represents either a
person (identity vertex) or an instantiation of a person
(instance vertex). For example, the person instance graph
describing the video sequence in Fig. 1 would contain two
identity vertices (one for Nicolas_SARKOZY and one
for Barack_OBAMA) and four instance vertices (a face
instance, a speech turn instance and a written name instance
of the former, and a spoken name instance of the latter).

As illustrated in Fig. 2, instance vertices are localized in
time (with start and end times). An in-depth description of
instance vertices is provided in Sect. 2.1.

On the other hand, identity vertices are meta-vertices
representing one person each. They are described in Sect. 2.2.



Int J Multimed Info Retr

Table 1 Notations . .
Speaker identification

I Universal set of person identities
ID Maps each vertex to its true identity
Ai Acoustic speaker model of person i

Person instance graph

g Graph
1% Set of vertices vey
T Set of speech turns teT
w Set of written names wew
S Set of spoken names sesS
T(t) Temporal support of speech turn ¢
|T(2)| Duration of speech turn ¢
Ty Set of written names identities Zyy = {ID(w) | w € W} iw € Ty
Is Set of spoken names identities Zs = {ID(s) | s € S} is €Zs
7 Set of identities for which a speaker model A is available i*eI*
E Set of edges v, V) e
Pov Probability that v and v’ are the same person
pvw = p(ID(v) = ID (V) | v, V)
Optimization
Ay Set of clustering functions e Ay
L Objective function
o, f Hyper-parameters
Evaluation
r,h Reference and hypothesis
DER Diarization error rate
IER Identification error rate
weights p,, are therefore symmetrical (i.e., pyy = pPv'v),

written  face s;geech

name track urn

blah blah ...
Barack OBAMA

-.. blah blah

’tgnicolas | 5_2‘ Barack|
SARKOZY OBAMA
spoken (" (EA
name

Fig. 1 A TV sequence and the corresponding person instance graph
containing two identity vertices and four instance vertices (a speech
turn, a face track, a written name and a spoken name)

Edges £ C V x V. Every edge (v,v’) € & connects
two vertices in the graph. A person instance graph does not
contain any self-loop: Vv € V, (v, v) ¢ £. Moreover, it may
be incomplete: (v, v') € V x Vs.t. v # v and (v, v') ¢ €.

Weights p € [0, 1€, Every edge (v, V') € £ is weighted
by the probability p,,, that vertices v and v’ correspond to the
same identity. In other words, py,y = p(ID(v) = ID(V))
where the function ID: )V — I'maps each vertex v toitsiden-
tity among the universal set of person identities I. Note how

thus making the graph G undirected. Section 2.3 describes
how these weights are obtained in practice.

2.1 Instance vertices

While four different types of instance vertices can be added
to a person instance graph, we only integrate three of them
(speech turns in Sect. 2.1.1, written names in Sect. 2.1.2 and
spoken names in Sect. 2.1.3).

The proposed framework can be extended at no extra cost
to the face modality and we do plan to try and integrate face
tracks in the future. The only reason why we did not integrate
the face modality is because we did not have access to face
detection, clustering and recognition technologies at the time.

2.1.1 Speech turns T

The first set of instance vertices added to the graph are speech
turns + € 7. They are automatically extracted from the
audio stream of the TV broadcast following the initial steps
of LIMSI multi-stage speaker diarization system described
in [1].
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Fig. 2 A person instance graph (/eft) and the expected output of clustering (right)

First, 12 Mel frequency cepstral coefficients (MFCC) and
log-energy are extracted from the audio signal every 10 ms
using a 30 ms Hamming window on the 0-8 kHz band-
width [22]. Then, speech activity detection is performed with
a Viterbi decoding using one 64-Gaussians mixture model
(GMM) per class: speech, noisy speech, speech over music,
pure music, and silence or noise. These GMMs were trained
on approximately one hour of matching data selected from
radio broadcast news [16]. This approach reaches nearly per-
fect (96 % accuracy) speech vs. non-speech classification on
the corpus used in our experiments, i.e., TV broadcast where
speech is usually prepared (as opposed to spontaneous) and
recorded in a controlled environment.

Speech segments are further segmented into smaller
homogeneous segments by detecting speaker changes [8].
This is achieved by looking for maxima of the local Gaussian
divergence G(wL, wr) between two adjacent sliding win-
dows wr, (left) and wr (right) of 5 s. The Gaussian divergence
is defined as follows:

2 —1/2
V2os P (ur = ) (1)

G(wr, wr) = (ur — 11" - B
where the MFCC coefficients extracted from each window
are modeled as Gaussian with diagonal covariance matrix
N(u, ). Each maximum is compared to a threshold 6 to
decide whether the corresponding timestamp is a speaker
change. 6 is optimized on a development set so that the result-
ing speech turns ¢ are almost pure (i.e., contains speech from
one speaker only).

Figure 3 shows the distribution of the duration |7 (¢)| of
the speech turns ¢ on the test set described in Sect. 4.1:
90 % are shorter than 10 s. On average, speech turns ¢ are
pure at 96.4 % (a proper definition of purity will be given in
Sect. 4.2).

2.1.2 Written names VW

As shown in Fig. 4, reporters in TV news (or guests in talk
shows) are often introduced visually by a title block contain-
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Fig. 3 Distribution of speech turn durations on the test set

ing their names. Similarly to what we did in our previous
work [6], we automatically extract every occurrence of these
names and add them to the graph as written name instance
vertices w € W C V. Figure 2 underlines the fact that they
are localized in time, and that the name of the same person
can appear several times over the duration of a TV show.

In practice, we rely on the video optical character recogni-
tion (OCR) system proposed by Poignant et al. in [36] to auto-
matically extract this information. First, overlaid text boxes
are detected using a coarse-to-fine approach with temporal
tracking. Then, the open-source Tesseract toolkit [40] pro-
vides one transcription every tenth frame. These transcrip-
tions are finally merged to produce a unique transcription for
each text box. Poignant et al. [36] reports precision of 97 %
on a TV broadcast corpus similar to the one used in our exper-
iments (i.e., overlaid text with clean flat background and, by
design, easily readable fonts).

An additional filtering step is needed because, depending
on the TV channel, not every detected box is used to introduce
a person. In Fig. 4, for instance, a few text boxes are used to
provide news flash (left) or the name of the TV show (right).
However, TV channels tend to always use the same visual
layout. Therefore, to remove those unwanted text boxes, the
training set described in Sect. 4.1 is used in combination with
a large list of person names from Wikipedia to automatically
learn the spatial positions of text boxes the most likely to con-
tain introductory names. Text boxes located at other spatial
positions are filtered out.
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Fig. 4 Cross-modal
probabilities p;,, depend on the
number of simultaneous written
names w

Airi;?a enre
le début de |'a

Eeo e eten a livré 258.

2.1.3 Spoken names S

Not only are person names displayed on screen, they are also
frequently pronounced, either by the anchor to introduce a
guest or an interviewee, or by a reporter as part of a TV news
report. Similarly, they can be added to the graph as spoken
name instance vertices s € S C V.

In practice, the automatic extraction of spoken names is
a two-step process. First, automatic speech recognition (or
speech-to-text) provides the textual transcription of the spo-
ken words. Then, named-entity recognition aims at extracting
person names from the resulting textual document.

However, though our automatic speech-to-text system [17]
performs relatively well (Word error rate = 16.9 %) on the
REPERE corpus, we were not able to obtain reasonably good
person name detection results using the named-entity detec-
tion system described in [11]: Slot error rate = 60 %. There-
fore, in the rest of the paper, all experiments involving spoken
name instances S are based on manual speech transcription
and manual person name detection.

2.2 Identity vertices 7

While there can be multiple instance vertices of the same
person in a graph (e.g., one for every speech turn, one writ-
ten name instance for every time it appears on screen, etc.),
there cannot be more than one identity vertex i € I per per-
son. To ensure unicity, a unique standardized identifier is
given to each person, using the following naming convention:
First-Name_LASTNAME. For instance, the identifiers for
the first and third authors of this paper are Herve_BREDIN
and Viet-Bac_LE.

Identity vertices can be obtained in three different man-
ners: Z = Tyy UZg U Z*. First, Tyy = {ID(w) | w € W}is
the set of identity vertices provided by the video OCR system
described in Sect. 2.1.2. Similarly, Zs = {ID(s) | s € S}
is derived from the output of the spoken name detection
described in Sect. 2.1.3. Simple heuristics are used to derive
the standardized identifiers from the original textual output
of both approaches. Finally, an additional set of identity ver-
tices Z* is provided by the acoustic-based speaker identifica-

One name: pgyy = 0.956

640 commandes nettes d'avio

Two names: ptq, = 0.996

ECONOMIE : LA RECHUTE ?
——

MICHEL SAPIN

ERIC WOERTH
(ps) (ump)

tion system described in Sect. 2.3.2. Z* contains one identity
vertex per speaker for which a voice model is available.

2.3 Weighted edges (£, p)

Once vertices V are added to the person instance graph, edges
€ C V x V are added between selected pairs of vertices. The
objective of this section is twofold: describe which edges
are added, and how the weighting function p is practically
estimated:

p: € —10,1] @)
(v,v") > pyy = p(ID(v) = ID(W) | v, V")

2.3.1 Speech turn similarity p;;

As illustrated in the upper timeline of Fig. 2, the first set
of edges is 7 x 7 C &. Every pair of speech turns (¢, 1)
is connected by an edge—hence, making the speech turn
subgraph G = (7,7 x 7, p) complete.

The weights p,, are then estimated as follows. First, each
speech turn ¢ € 7 is modeled with one Gaussian with full
covariance matrix X; trained on the D = 12-dimensional
MEFCC and energy. Then, the similarity d,, between two
speech turns ¢ and ¢’ is defined as the Bayesian Information
Criterion ABIC(¢, t') [8]:

dyy = (ne +nyp)log| ;4|
—n;log|E | — nylog|Zy|
1 1
—§~)»-(D+§D(D+1))log(n,+n,r) 3)
where n; is the number of MFCC samples in speech turn

t and A a penalty weighting coefficient. Finally, we apply
Bayes’ theorem to obtain the posterior probability p;:

P = p(ID(t) = ID(t") | dyyr)

1
- 4
T P 100 £ TD0) @
7~ pd | ID() = 1D())
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Fig. 5 Estimation of the log-likelihood ratio on the training set. Top
likelihood under hypothesis H = ID(t) = ID(t') (rightmost distri-

bution, green) and H = ID(t) # ID(t') (leftmost distribution, red).
Bottom estimated log-likelihood ratio (bullet) and linear regression

where the prior probabilities are assumed equal (7= = )
and the likelihood ratio is estimated on the training set
described in Sect. 4.1. This estimation process is illustrated
in Fig. 5 and is achieved using linear regression by minimiza-
tion of the sum of squared error in the logarithmic space.

2.3.2 Similarity to speaker model py;

Though those edges are not shown in Fig. 2, one can directly
connect speech turn instance vertices ¢t € 7 to identity ver-
tices i € Z*, by means of an acoustic-based speaker identi-
fication system.

In this work, we rely on a standard Gaussian mixture
model (GMM) system based on adapted universal back-
ground model (UBM) [26]. It has proved to be very successful
for text-independent speaker recognition, since it allows for
robust estimation of speaker models A; even with a limited
amount of enrollment data [38].

Acoustic features x are extracted from the speech signal on
the 0—8 kHz bandwidth every 10 ms using a 30 ms Hamming
window. Feature vectors x consist of 15 PLP-like cepstrum
coefficients [22] plus 15 delta coefficients and delta energy,
for a total of 31 features. Feature warping normalization is
performed using a sliding window of 3 seconds to reduce the
effect of the acoustic environment [33].

First, a gender-independent multilingual UBM with a mix-
ture of 256 diagonal Gaussians was trained on a multilingual
broadcast corpus [38]. Then, three annotated data sources
were used to train one model A; per speaker i € Z*: the
REPERE training [19], the ETAPE training and development
data [20] and additional French politicians data extracted
from French radio broadcast. Only speakers with more than
30 s training data were kept, resulting in |Z*| = 611 speaker
identity vertices. For each speaker i € 7%, a speaker-specific
GMM J; is trained by MAP adaptation of the means of the
UBM [18].
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Given a speech turn ¢ and a target identity i € Z*, the
speaker identification score d;; is defined as the following
log-likelihood ratio:

1
dii = — |log [T f (xla) —log [] f (xle) ©)
t

xeX; xeX;

where X, is the set of n, feature vectors extracted from
speech turnz, f (x|X;) is the likelihood of feature vector x for
speaker model A; and f (x|Ag) its likelihood for the UBM.

Identification scores d;; are then calibrated into prob-
abilities p;; following the open-set speaker identification
paradigm:

pii = p(ID(Q) =i | dy;)
p(dsi | ID(t) = i)

_ " P | ID0) # 1) ©
pdy | ID() = 1))
O+ 2 T | 100 279

where 7(7) is the prior probability that speaker is unknown
(i.e.,i ¢ %) and p(d;; | ID(¢) # i) is an approximation of
p(dsi | ID(t) = () ). Prior probabilities 77; are assumed to
be equal (i.e., r; = (1— 7 )/|Z*|). In practice, likelihood
ratios are estimated like in Sect. 2.3.1.

2.3.3 Written names propagation p;y,

As already discussed in Sect. 2.1.2, written names w € W
are usually overlaid on screen to introduce the speaker of
the current speech turn ¢ € 7. In other words, a cross-modal
edge (¢, w) should be added to the graph as soon as tMw #* &
where the 1 operator returns the temporal intersection. This is
illustrated in Fig. 2 with thick dotted vertical edges between
speech turns and written names.

Though the corresponding probability p;,, is very high,
it is strictly smaller than 1 for various reasons. In TV news
reports, for instance, the speech of a foreign speaker is usually
replaced by the voice of the translator. In talk shows, the
speech of the current speaker (whose name is overlaid) can
be interspersed with interruption from another guest.

In practice, pyy, is estimated by a simple frequency count
on the training set. As illustrated in the header of Fig. 4, its
value depends on the number of co-occurring written names:
Prw =~ 0.95 in case there is exactly one written name, and
Prw ~ 0.99 when there are two names. In this latter case, the
identity unicity constraints defined later in Sect. 3.1 will make
sure at most one written name is associated to the speech turn.
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Fig. 6 Probability f (A7) that a spoken name s at time 7y is the name
of a potential speaker at time 7, + At

2.3.4 Spoken names propagation p;s

While written names w € )V are often used to introduce
the current speaker, speakers seldom pronounce their own
name. Instead, spoken names s € S are used either to address
another particular speaker or to talk about someone else.

Given a spoken name s pronounced a time t, Fig. 6 shows
the probability f (A7) thata potential speaker at time T, + At
is the person whose name was pronounced at time 7. It was
estimated using the training set described in Sect. 4.1.

The maximum at At = 15 s corresponds to the fact that a
speaker is typically named just before (s)he starts speaking.
f(At = 0) = 0.04 indicates that speakers rarely name
themselves in TV broadcast. We also observe that values of
f are lower in general for negative values of At than positive
ones. This shows that speakers are named less frequently after
they spoke (e.g., for thanking them) than before they speak
(e.g., for introducing them).

We rely on function f to add edges between each pair of
spoken name s € S and speech turn ¢ € 7 as long as they
are <60 s apart:

pis = p(ID() = ID(s) | 1, 5)

1
:|T(t)| / f(r —15)dr @)

TeT (1)

where T'(¢) is the temporal support of speech turn ¢.

2.3.5 Hard edges (pyi, = psi, = 1)

Finally, every written name w (resp. spoken name s) is con-
nected with probability 1 to the corresponding identity vertex
iw = ID(w) € Zyy (resp. iy = ID(s) € Zg) introduced in
Sect. 2.2.

These edges are denoted w < iy, and s < iy in the rest
of this article (as opposed to regular edges t <> 1 ort < i,
for instance) to highlight the fact that they are weighted with
probability 1.

3 Mining person instance graphs

Figure 2 contains a simple person instance graph involving
three persons (whose respective instance and identity ver-
tices are colored in red, green and blue). It contains five
speech turn vertices 7 = {t1, 1z, 13, 4, t5}, three written
name vertices w € W providing only two identity vertices
Tyy = {IDy1, ID,}. Mining this graph for speaker identifica-
tion consists in automatically assigning the correct identity
vertex to each speech turn: t; — IDj, tp — ID1, 13 — (),
t4 — ID and t5 — ID;. Notice how the graph does not
contain the actual identity of speech turn #3: speech turn #3
therefore remains anonymous (()).

More generally, given a person instance graph G =
V, &, p) with identity vertices Z C V, we aim at finding
the optimal identification function ID defined as follows:

ID:V—>ZU{®}

v ifv € Z(i.e., visanidentity vertex); 8)
V> i ifdi € Is.t.visaninstance of i;
( otherwise.

This can also be seen as a clustering problem where all
instances of a given identity must be grouped together (along-
side the actual identity itself). The expected output of such
clustering is illustrated in the right part of Fig. 2.

Clustering has been addressed in numerous scientific
fields in the past: from graph mining and community detec-
tion [30] to natural language processing and co-reference
resolution [14]. Classical clustering algorithms include K-
means and hierarchical (agglomerative or divisive) cluster-
ing [23]. However, they suffer from three main limitations.

First, though heuristics were proposed to estimate it auto-
matically [29,34], K-means and its variants usually rely on
the assumption that the number of clusters K is known a pri-
ori. Moreover, most approaches do not guarantee global opti-
mality. In hierarchical agglomerative clustering approaches,
two clusters are merged because they are (locally) close to
each other, independently of how similar (or dissimilar) they
are to other clusters. Finally, state-of-the-art approaches usu-
ally rely on complete affinity matrices and cannot deal with
situations where the affinity matrices are incomplete (e.g.,
missing edges in person instance graphs).

Inspired by [14], we proposed in [6] to model clustering as
an Integer Linear Programming (ILP) problem, addressing all
three shortcomings. Sections 3.1-3.3 provide a more detailed
description of this previous work. Two major improvements
are proposed in Sect. 3.2 (i.e., weighted objective function)
and Sect. 3.4 (i.e., transitivity constraints relaxation).

ILP has been used before by Dupuy et al. [12] in the frame-
work of speaker diarization. However, our approach differs
from [12] both in the actual formulation of the ILP problem
(they rely on the assumption that a few speech turns are clus-
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ter centroids, we do not), and in the fact that their approach
is purely mono-modal and is limited to speaker diariza-
tion (ours is multi-modal and can also be used for speaker
identification).

3.1 Clustering function

Any output of a valid clustering algorithm can be described
by a clustering function §, as follows:

§:VxV— {01}

1 if vand v’ are in the same cluster,
0 otherwise.

(v, V) = [ ©)
However, reciprocally, a function § € {0, I}VXV does not
always correspond to a clustering output. Additional con-
straints are needed in order to guarantee a valid clustering:
(a) reflexivity, (b) symmetry and (c) transitivity. We define
Ay C {0, 1}V*V the subset of functions verifying these
constraints:

§ {0, 1}V stV (v,v, ") eV,
(@) dyy =1
Ay = 10
4 (b) 8yvr = By (10)

(C) (va/ = 1 A Sv’u” = 1 — SUU” = 1

While it is trivial to integrate reflexivity (a) and symmetry (b)
constraints in the ILP framework, the transitivity constraints
(c) need a little bit of work, summarized in Eq. (11):

v (U, U/, U”) S V3, 81}1}’ + 81}’1}” — (va// < 1
8v’v” + av”v - 8v’v <1 (11)
Sv’/v + c‘;vu/ - 31}”1/ <1

Additionally, each instance vertex can correspond to at most
one identity. Therefore, the following constraints are added
to the ILP problem:

VeV, D s, <1 (12)
iel

In particular, when combined with reflexivity constraints

(6ii = 1), Eq. (12) implies that two identity vertices can-

not end up in the same cluster:

V(i,i')eI? i #i = 8§y =0 (13)

These implicit constraints are marked as red “forbidden” traf-
fic signs in Fig. 2. Finally, we explicitly constrain written
names w (resp. spoken names s) to be in the same cluster as
their corresponding identity vertex iy, (resp. is):

Yw e W, 8y, =1
Vs €S, 5“'5 =1

These constraints are marked as blue traffic signs © in Fig. 2.

(14)
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3.2 Objective function

Clustering is the task of grouping a set of objects in such a
way that objects in the same group (called cluster) are more
similar to each other than to those in other groups (clusters).

In other words, when clustering a person instance graph
g = (V,&, p), we aim at finding the clustering function
§ € Ay with constraints (12) and (14) that maximizes
the intra-cluster similarity while minimizing the inter-cluster
similarity:

§* = argmax L%, &, p) (15)
seAy

where o € [0, 1] is an hyper-parameter controlling the size
of the clusters, and the objective function £% is defined as

follows:

intra-cluster

similarity
L8, E, p) = |€|_1 |:Ol : Z Svv * Pov'
(v,v)e€
+d-—a) > (1—suvf>-<1—pw/>]
(v,v)e&

inter-cluster
dissimilarity
(16)

By design, a person instance graph usually contains many
more ¢ < {’ edges (between any two speech turns) than
it does t < w edges (only between co-occurring speech
turn and written name). Therefore, Eq. (16) implicitly gives
more importance to the former, at the expense of the latter.
To compensate for this behavior, we extend the objective
function in the following way:

ACKNOEDY
xe{T W.,S8,7}
ye{T W.S.T} (17)

Bxy - L7 (8, EN (x X y), p)

§* = argmax E‘;(&, E, p)

seAy
with ., € [0, 1], By € [0, 1] and Zx,y Bxy = L. In other
words, depending on the value of hyper-parameter 8, edges
may be weighted differently depending on the type of vertices
they connect.

3.3 Solution

This optimization problem falls into the mixed-integer linear
programming (MILP) category. As such it can be solved by
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the Gurobi optimizer, available freely for academic research
purposes [21].

The resulting optimal solution §* can then be used to asso-
ciate a unique identity to each instance vertex:

IDg: V — ZU{®}

i if3ieZsté =1,
(> otherwise.

(13)
V=

Note that constraints (12) make sure that each instance vertex
is connected to at most one identity vertex. Moreover, it might
happen that an instance vertex v is not connected to any
identity vertex. Hence, it remains anonymous: IDg+ (v) = ().

3.4 Transitivity constraints relaxation

As far as person identification is concerned, Eq. (18) shows
that the only important objective is that every instance vertex
v is associated to its correct identity vertex i € Z. In particu-
lar, there is no need for two instance vertices v and v’ of the
same person i to be connected to each other (§,,y = 1), as
long as they are correctly connected to the correct identity
vertex i (6,; = 1 and §,/; = 1). Therefore, strict transitiv-
ity constraints defined in Eq. (10.c) can be relaxed in the
following way

V(v v, i) e (W\T) x T,

(19)
Svi :1/\31)’1' =1 ;’E} 3vv’:]

Formally, this is achieved by replacing the strict transitivity
constraints defined in Eq. (11) by the following loose transi-
tivity constraints (20) and (21):

Spv + Sy — Sy < 1
v (U, U/, UN) € {V \ 1}3, Sv/v// + (Sv//v — SU/U < 1
81)”11 + ‘Svu’ - 81}”1}’ <1

(20)

(va’ + 8yi — Sv’i <1

/A 2
V (v, v, i) e {(V\I})" x T, S 4 Suri — Bt < 1

21

Relaxing transitivity constraints has two main practical
implications. The first one is that the size of the optimization
problem is reduced and can therefore be solved more quickly.
But, most of all, the second benefit of relaxing constraints is
that it leads to better speaker identification performance (as
shown in Table 10 of Sect. 5 devoted to experimental results).

3.5 Applications

Depending on the targeted application, a person instance
graph may contain only a subset of vertices and edges. Table 2
provides a few possible configurations.

Speaker diarization (configuration 5A in Table 2), for
instance, is the task of partitioning and labeling an audio
stream into homogeneous speech segments according to the
identity of the speaker. One does not care about the actual
identity of the speaker. This is actually a speech turn cluster-
ing problem. The corresponding graph only contains speech
turn vertices ¢+ € 7 and speech turn to speech turn edges
t <> t'. It does not contain any identity vertices.

Standard supervised speaker identification can also be
modeled as a person instance graph mining problem. Thus,
configuration 7A simply connects every speech turnt € 7 to
a set of identity vertices Z* for which acoustic models were
obtained using a manually annotated training set.

Configurations 8A and 8C allow cross-modal speaker
identification. Basically, these configurations deal with unsu-
pervised speaker identification in the sense that no acoustic
model of the speakers is available a priori. One must uncover
the identity of the speaker from other modalities: either
names written on the screen (configuration 8A) or pro-
nounced, or a combination of both written and spoken names
(configuration 8C).

Table 2 Various person instance graph configurations and corresponding applications

# Targeted application Instance vertices Identity vertices Edges
teot teit toewsil, tossig
5A  Speaker diarization T - - - - - t<t - - -
7A  Mono-modal speaker T - - A - - ti* - -
identification
7B T - - VAN - t<t  teit - -
8A  Cross-modal speaker 7 w - - Ty - tet - t<ow Sy -
identification
8C 7 W S - Tw ZIs tt - towsi, t<os5&i
9 Multi-modal speaker T w - ¢ Ty - tot tei* teowsi, -
identification
7 W S ¢ Ty Is tot teit tewsil, tossig

Possible sets of vertices include speech turns 7, written names W, spoken names S and identity vertices Z*, Zyy or Zs. x <> y stands for X x Y
edges, and x <y for hard constraints (§,y = 1). Column # refers to table and experiment identifiers used in Sect. 5

@ Springer
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TRAINING SET

24 hours DEVELOPMENT
3 hours

A: BFM Story

B: LCP Info

C: Top Questions

D: Ca Vous Regarde
E: Planéte Showbiz
F: Entre Les Lignes
G: Pile Et Face

TEST
3 hours

Fig. 7 Training, development and test sets each contain seven different
types of shows (A-G)

4 Experimental protocol
4.1 Corpora

Figure 7 provides a graphical overview of the REPERE video
corpus used in our experiments [19] and to be released pub-
licly by ELDA in 2014. It contains 188 videos (30 h) recorded
from 7 different shows broadcast by the French TV channels
BFM TV and LCP. The audio stream is manually annotated
with labeled speech turns ( “who speaks when?”). In other
words, a reference function r is available for each video:

r: T —PIU{®) 22)
T = {il, ...,l'nf}

where T is the temporal support of the video, I is the universal
set of person identities introduced in Sect. 2, P(A) = {A |
A C A} is the set of all subsets of A, and n; is the number
of simultaneous speakers at time t.

In practice, n, € {0, 1, 2}. n; = 0 is used for non-speech
regions (i.e., 7 (t) = &). n; = 2 corresponds to overlapping
speech regions where two persons speak simultaneously. In
some rare cases (e.g., during street interviews), ) € r(t)
indicates that the corresponding speaker could not be iden-
tified and therefore remains anonymous. Table 3 aggregates
the duration of these special cases for the test set.

Manual speech transcription and person names entity
detection are also provided: they were already mentioned
in Sect. 2.1.3 for the description of spoken name vertices
seS.

The video stream is also manually annotated, but not as
extensively as its audio counterpart. Only one frame every 10
seconds is annotated with manual detection and transcription
of overlaid texts, and manual detection and identification of

Table 3 Test set statistics

Total T 02:56:55 -

Non-speech [r(t)] =0 00:07:45 (4.4 %)
Overlapping speech r(t)| =2 00:06:40 (3.8 %)
Anonymous speaker ® er(r) 00:02:00 (1.1 %)

@ Springer

Table 4 Identification error &/,

r(t) h(t) Srh (7) Error type

%) 1% 0 Correct (no error)

{i} {i} 0

{®) {®) 0

%] {i} 1 False alarm

{i} %] 1 Missed detection
{i,i'} {i} 1

(i} {i"} 1 Confusion

{i} {®} 1

{i,i"} {i"} 2 Confusion and missed

detection

faces. Note that these visual annotations are not used in this
work (except in Sect. 2.1.2 to automatically learn the usual
spatial positions of title blocks).

4.2 Evaluation metrics

For evaluation purposes, the manual reference r is compared
to the hypothesis / obtained automatically as follows:

h: T - PZU{®}) -
T {IDg«(t) |t €T, T Ct} @3)
where optimal clustering function §* is given by Eq. (17),
IDs is defined in Eq. (18) and T [ ¢ means that speech
turn ¢ overlaps time 7. Unless otherwise stated, tables report
values aggregated over the 28 videos of the test set (for a total
duration of 3 h).

Identification error rate (IER) The identification error rate
(IER) is defined as the proportion (in duration) of the refer-
ence r incorrectly identified by the hypothesis &:

[rer &M@ dr

IER(r, h) = [T

(24)

where Erh(r) returns the number of errors in the hypothesis
hatagiventimet € T:

E:T >N
(25)

T = max(|r (), [h(D)]) — [r(z) N h(T)]
As shown in Table 4, the IER evaluation metric takes various
types of error into account. In particular, incorrect speech
vs. non-speech detection (or the lack of an overlapping
speech detection step) may result in false alarms or missed
detections.

Precision and recall Though the IER conveniently pro-
vides a unique value to compare two different approaches,
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we also report the complementary values of precision and
recall to help analyze their behavior:

Sern@ i)
Zi’eIh\@ (ZieL K(i’ i/))

Precision (r, h) = (26)
ZieL\@ K (i, 1)

Recall (r, h) =
2T \® (Zi’eIh K (i, i/))

27)

where « (i, i’) is the total duration of co-occurrence between
speaker i of reference r and speaker i’ of hypothesis &:

kKT, x I = RT

G,i") —~ / ]1( (r)dt (28)
cier(t)

€T j'eh(z)

Diarization error rate (DER) While the ultimate goal of the
proposed approaches is to improve speaker identification,
we also report some experiments around speaker diarization.
In this framework, the actual identity of the speaker does
not matter—we only aim at finding the best speech turns
clustering as possible. The diarization error rate (DER) was
first introduced in the framework of NIST rich transcription
evaluation campaigns [15].

Let us denote Z, the list of speakers in the reference r
and 7 the list of speech turns clusters in the hypothesis 4.
Without loss of generality, we can assume that |Z,| = |Zj].
The mapping function m* € Z,% is defined as a bijection
between Z, and 7, that maximizes the total duration of co-
occurrence:

m* = argmax Z k(i,m@)) (29)

meL,Ir ; eZ,
The diarization error rate (DER) can then be defined by:
DER (r, h) = IER (r, m*(h)) 30)

where m* (h) is an (abusive) shortcut to denote the hypothesis
h for which each speaker is mapped to the corresponding
speaker in reference r, using the optimal mapping function
m*.

Incase |Z,| < |Zp| (resp. |Z,| > |Zy|), one can artificially
add dummy silent speakers iy in the reference (resp. the
hypothesis), such that «(igz,i) = 0 for all i € Z (resp.
k(i,ig) =0foralli € Z,).

Purity and coverage In complement to the DER, we also
report the complementary values of purity and coverage:

2ier, maxw (i, 1)

Zi’eIh (ZieI, K (i, i/))

Purity (r, h) = 3D

e, i,rga;;ml)

ZieL (Zi’eIh K (i, i/))

Coverage (r, h) = 32)

Purity measures the ratio between the duration of the speech
turns of the dominating speaker in a cluster and the total
duration of all speech turns in the cluster (higher is better) [8].
Coverage is the dual measure, and accounts for the dispersion
of the speech turns of a given speaker across clusters (higher
is better) [16].

4.3 Setup

As illustrated in Fig. 7, the REPERE corpus is divided into
three sub-corpora: training set, development set and test set.
The training set is used to estimate p;;, pri, Prw and pyg
introduced in Sect. 2.3. The development set is used to select
the optimal value for hyper-parameters o and B introduced
in Sect. 3.2:

(a®, B*) = argmin Eqey [XER(r, h)] (33)
o,p

where XER € {IER, DER} depending on the application
(speaker identification or diarization). Hyper-parameter tun-
ing is achieved using random search. Indeed, Bergstra and
Bengio showed that random search is usually able to find
models that are as good or better than deterministic grid
search within a small fraction of the computation time [3].
Finally, the test set is used for evaluation.

5 Results and discussion
5.1 Speaker diarization

Table 5 summarizes the first set of experiments focusing on
speaker diarization. The proposed approaches (5A to SD) are
compared with a state-of-the-art BIC clustering baseline (5SE)
based on the same input segmentation into speech turns [1].
While the audio-only approach (5A) is slightly worse than the
baseline (21.1 vs. 19.8 %), it does yield much purer clusters
(94.7 vs. 92.1 %).

Figure 8 illustrates how the parameter o can be used to find
the right balance between cluster purity and coverage. For
instance, one can increase the purity of clusters by reducing
the value of « [i.e., it gives more importance to the inter-
cluster dissimilarity in Eq. (16)].

However, the main strength of the proposed approach
is how easily it can be extended to the multi-modal (5B)
and supervised (5C) cases. For instance, adding both writ-
ten name vertices and supervised identification edges to the

@ Springer
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Table S Speaker diarization experiments

# Vertices Edges DER (%) Purity (%) Coverage (%)
5A T t <t 21.1 94.7 83.6
5B TUWUZw ot o wsiy 18.3 93.4 85.8
5C TUI* i<ttt 18.2 94.0 86.1
5D TUWUZLy UT* i*otot owsiy 17.8 93.9 85.7
5E BIC clustering baseline [1] 19.8 921 86.8
Strict transitivity constraints
Results in bold are discussed in the text
graph results in a major performance improvement: config-  Table 6 Oracle performance
uration 5D is 2 % better than the baseline SE. 4 Vertices IER (%)  Precision (%)  Recall (%)
6A z* 35.0 100.0 67.9
5.2 Oracle performance 6B Ty 303 100.0 63.8
. ) 6C  Is 35.8 100.0 67.3
All expe'rlmeflts r(f,ported in the rest of .the paper focus on Tyy UTs 215 100.0 81.9
spefaker 1derﬁ1ﬁcat1(;ln. Howeve;, d%pean}lni 01:1 tbe Conﬁgu.- 6E T U Ty 13.4 100.0 90.1
raFl(;E’hnOt a iﬁe::c turns ian e é fl-m e 1 bcl)r 1fnstanc.e, it 6F T UTs 10.9 100.0 2.5
mi appen that no acoustic model is available for a given
ghthapp g 6G T*UTwUTZs 87 100.0 94.9

speaker and his/her name is never written on screen nor spo-
ken. To determine the IER lower bound, we performed oracle
experiments, reported in Table 6.

An oracle is capable of correctly identifying any detected
speech turn as long as the corresponding identity vertex is
available in the graph. For instance, configuration 6B shows
that it is theoretically possible to correctly identify 63.8 %
of the total speech duration in an unsupervised way by prop-
agation of the detected written names. When all sources of
information are combined (6G), one cannot expect to get
better than IER = 8.7 %.

5.3 Mono-modal speaker identification

Table 7 summarizes mono-modal supervised speaker iden-
tification experiments: they are mono-modal because they
only rely on acoustic data, and supervised because they rely
on prior speaker models Z* to identify speech turns.

1.0 T T

0.8

0.6

0.4}

0.2 Purity
== Coverage
00 0.2 0.4 0.6 0.8 67

Fig. 8 Influence of parameter o on the development set. The best
DER = 18.5 % is obtained for « = 0.25
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IER and recall do not sum to one because of non-speech, speech and
overlapping speech detection errors
Results in bold are discussed in the text

It can be demonstrated that solving the optimization prob-
lem with configuration 7A leads to the following solution:

i* = argmax p;; if p;+ > (1 —azzs)

ID(t) = ieT* (34)

otherwise.

This is basically the standard open-set speaker identifica-
tion paradigm: for each speech turn, select the most probable
speaker model as long as its probability is higher than a pre-
defined threshold. The only difference with the GMM-UBM
baseline lies in the fact that this decision is taken at speech
turn level instead of cluster level (from a preliminary speaker
diarization step) for the baseline. This explains why config-
uration 7A leads to slightly worse results than the baseline
(+0.5 % IER).

Table 7 Mono-modal speaker identification, with relaxed transitivity
constraints

# Vertices Edges IER (%) P. (%) R. (%)
TA TUI* i* <t 49.4 54.7 54.3
7B TUI* i*otot 47.9 55.9 55.8
7C GMM-UBM baseline 48.9 57.5 54.3

Results in bold are discussed in the text
P. precision, R. recall
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However, this limitation is addressed in configuration 7B
by adding edges between speech turns (¢ <> t’) to the graph.
A closer look at the hyper-parameters tuned on the devel-
opment set tells us that speaker diarization (877 = 0.55) is
given slightly more importance than supervised speaker iden-
tification (877 = 0.45). Moreover, a77 is automatically set
to 0.19, enforcing pure speech turn clusters (according to
Fig. 8). Ultimately, this leads to better results than the base-
line (—1 % IER).

5.4 Cross-modal speaker identification

Table 8 summarizes cross-modal unsupervised speaker iden-
tification experiments: they are unsupervised because they
do not rely on any prior speaker models, and cross-modal
because identities are propagated across modalities (from
written or spoken names to speech turns).

Configuration 8A shows the most promising results.
Indeed, although it is an unsupervised approach, it does per-
form better than the best mono-modal supervised approach
(7B in Table 7). Moreover, its performance (IER = 46.5 %)
is very close to the one of the corresponding oracle (6B
in Table 6, IER = 39.3 %). It also obtains slightly better
results than the baseline system 8D described in the intro-
duction [37].

On the other side, it seems that the asynchronous nature
of t <> s edges (a speaker rarely pronounces its own name)
is not well suited for the proposed framework. As a matter of
fact, configuration 8B focusing on named speaker identifica-
tion yields poor performances (IER = 81.8 %) even though
both the speech transcription and the named-entity detection
steps are done manually. However, the integration of spoken

Table 8 Cross-modal speaker identification experiments

name vertices does bring a small (—0.9 % IER) improvement
to configuration 8A (yet not as significant as we would have
expected based on the performance of oracle 6D).

5.5 Multi-modal speaker identification

In Table 9, the last set of experiments shows how the best
mono-modal supervised approach (configuration 7B, IER =
47.9 %) and the best cross-modal unsupervised one (config-
uration 8A, IER = 46.5 %) can be advantageously combined
into a joint multi-modal speaker identification approach (con-
figuration 9, IER = 25.3 %).

This major performance leap can be explained by the
intrinsical complementarity of both approaches. Table 9
provides a detailed analysis of their behavior. Indeed, the
REPERE corpus also comes with annotation of speaker roles:
anchor, journalist, reporter, guest or other. The supervised
approach 7B works very well for anchors (IER = 20.3 %)
because a large amount of acoustic data is available in the
training set to learn their models. Conversely, the unsuper-
vised approach 8A performs very poorly (IER = 79.4 %)
because the anchors names are very rarely displayed on
screen. Reciprocally, itis very good (IER = 34.4 %) atrecog-
nizing journalists, reporters or guests because they are nearly
systematically introduced by an overlaid title block.

Finally, Table 10 highlights the effect of transitivity con-
straints relaxation on the performance of the best proposed
configuration. As envisioned in Sect. 3.4, strict transitiv-
ity constraints should be preferred if speaker diarization is
the targeted application, while loose transitivity constraints
lead to better speaker identification results. Strict constraints
tend to yield purer clusters (+5.7 %) and higher precision

# Vertices Edges IER (%) Precision (%) Recall (%)
8A TUWUZIy tot o ws iy 46.5 66.8 56.9
8B TUSUZIg ot <s&i 81.8 21.5 214
8C TUWUZLyUSUZs v Swotot o5& 45.6 62.7 58.2
8D Late name propagation baseline [37] 47.5 90.5 55.5
Relaxed transitivity constraints
Results in bold are discussed in the text
Table 9 Multi-modal speaker identification experiments
# Vertices Edges All Anchors All but anchors

IER (%) P.(%) R.(%) IER(%) P.(%) R.(%) IER(%) P.(%) R.(%)
7B TUI* i*eotot 47.9 559 55.8 20.3 86.6 79.7 51.8 50.8 48.3
8A T UWUIy tot o wsiy 46.5 66.8 56.8 79.4 31.8 20.6 34.4 76.9 65.8
9 TUT*UWUZLy ot cwsi, 253 79.4 78.6 239 82.9 76.1 224 825 779

Relaxed transitivity constraints
Results in bold are discussed in the text
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Table 10 Effect of transitivity constraints relaxation on the multi-
modal configuration 9

Constraints Strict (%) Loose (%)
DER 17.8 20.0
Purity 93.9 88.2
Coverage 85.7 91.1
IER 27.6 253
Precision 853 79.4
Recall 75.9 78.6

Results in bold are discussed in the text

(+5.9 %), while looser ones favor higher coverage (+5.4 %)
and better recall (4+2.7 %).

6 Conclusion

The first contribution of this paper is the introduction of a
unified framework for mono-, cross- and multi-modal per-
son recognition in multimedia data. Dubbed person instance
graph, this framework models the person recognition task
as a graph mining problem: person instance or identity ver-
tices are connected with edges weighted by the probability
that they are from the same person. Practically, we described
how the proposed framework can be applied to speaker iden-
tification in TV broadcast—with speech turn, written name
and spoken name instance vertices.

The second contribution of this paper is related to the use
of integer linear programming to solve the problem of clus-
tering person instances based on their identity. In particular,
we proposed two major extensions of our previous work [6]: a
weighted version of the objective function and the relaxation
of transitivity constraints.

Finally, the third contribution of this paper is a thorough
experimental evaluation of the proposed framework on a pub-
licly available benchmark database. In particular, depending
on the graph configuration (i.e., the choice of its vertices and
edges), we showed that multiple tasks can be addressed inter-
changeably (e.g., speaker diarization, supervised or unsuper-
vised speaker identification), outperforming state-of-the-art
mono-modal approaches.

While this work focused only on speaker identification, the
proposed framework can be easily extended to face recogni-
tion. Indeed, state-of-the-art face detection and tracking algo-
rithms are now robust enough to obtain reliable face tracks
instance vertices f. Face similarity measures could provide
weights for f < f’ or f <> i edges. Even when those
weights are missing, the proposed framework could be used
to perform speech-based face recognition (e.g., using t <> f
edges weighted by lip-sync measures [5]).

Another promising research direction is cross-show
processing, i.e., building one unique person instance graph

@ Springer

for a whole video collection—instead of one per video. This
could lead to significant improvements in terms of recall: the
identity of a person formally introduced in one video could
be propagated automatically to other videos where he/she
cannot be identified. Oracle studies on the subject tend to
confirm this assumption [35]. However, scaling up the pro-
posed approaches (based on computationally expensive inte-
ger linear programming) to such large graphs is not a trivial
task. We may have to look at similar problems addressed
in the graph mining community, such as community detec-
tion [4] or complex (i.e., made of heterogeneous vertices)
graph clustering [27].
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